論文の概要: Radar and Camera Fusion for Object Detection and Tracking: A Comprehensive Survey
- arxiv url: http://arxiv.org/abs/2410.19872v1
- Date: Thu, 24 Oct 2024 07:37:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:22:54.912538
- Title: Radar and Camera Fusion for Object Detection and Tracking: A Comprehensive Survey
- Title(参考訳): 物体検出・追跡のためのレーダーとカメラの融合:包括的調査
- Authors: Kun Shi, Shibo He, Zhenyu Shi, Anjun Chen, Zehui Xiong, Jiming Chen, Jun Luo,
- Abstract要約: 我々は、レーダーカメラ融合知覚の基礎原理、方法論、および応用に焦点を当てる。
本稿では,レーダーおよびカメラ技術の文脈における物体検出と追跡に関する研究トピックを網羅する詳細な分類法を提案する。
- 参考スコア(独自算出の注目度): 26.812387135057584
- License:
- Abstract: Multi-modal fusion is imperative to the implementation of reliable object detection and tracking in complex environments. Exploiting the synergy of heterogeneous modal information endows perception systems the ability to achieve more comprehensive, robust, and accurate performance. As a nucleus concern in wireless-vision collaboration, radar-camera fusion has prompted prospective research directions owing to its extensive applicability, complementarity, and compatibility. Nonetheless, there still lacks a systematic survey specifically focusing on deep fusion of radar and camera for object detection and tracking. To fill this void, we embark on an endeavor to comprehensively review radar-camera fusion in a holistic way. First, we elaborate on the fundamental principles, methodologies, and applications of radar-camera fusion perception. Next, we delve into the key techniques concerning sensor calibration, modal representation, data alignment, and fusion operation. Furthermore, we provide a detailed taxonomy covering the research topics related to object detection and tracking in the context of radar and camera technologies.Finally, we discuss the emerging perspectives in the field of radar-camera fusion perception and highlight the potential areas for future research.
- Abstract(参考訳): マルチモーダル融合は、複雑な環境における信頼性の高いオブジェクト検出と追跡の実装に不可欠である。
不均一なモーダル情報のシナジーを爆発させることにより、知覚システムはより包括的で堅牢で正確なパフォーマンスを達成することができる。
無線ビジョンのコラボレーションにおける中核的な懸念として、レーダーとカメラの融合は、その適用性、相補性、および互換性のために、将来的な研究方向を導いた。
それでも、オブジェクトの検出と追跡のためのレーダーとカメラの深い融合に焦点を当てた、体系的な調査はいまだに存在しない。
この空白を埋めるために、我々はレーダーとカメラの融合を包括的に総合的にレビューする取り組みに着手した。
まず,レーダカメラ融合知覚の基本原理,方法論,応用について詳述する。
次に,センサキャリブレーション,モーダル表現,データアライメント,融合操作といった重要な技術について検討する。
さらに,レーダ・カメラ技術の文脈における物体検出と追跡に関する研究トピックを網羅した詳細な分類法を提案し,レーダ・カメラ融合の認識分野における新たな視点を論じ,今後の研究分野の展望を浮き彫りにする。
関連論文リスト
- Multi-Task Cross-Modality Attention-Fusion for 2D Object Detection [6.388430091498446]
レーダとカメラデータの整合性を向上する2つの新しいレーダ前処理手法を提案する。
また,オブジェクト検出のためのMulti-Task Cross-Modality Attention-Fusion Network (MCAF-Net)を導入する。
我々のアプローチは、nuScenesデータセットにおける現在の最先端のレーダーカメラフュージョンベースのオブジェクト検出器よりも優れています。
論文 参考訳(メタデータ) (2023-07-17T09:26:13Z) - ROFusion: Efficient Object Detection using Hybrid Point-wise
Radar-Optical Fusion [14.419658061805507]
本稿では,自律走行シナリオにおける物体検出のためのハイブリッドなポイントワイドレーダ・オプティカル融合手法を提案する。
このフレームワークは、マルチモーダルな特徴表現を学習するために統合されたレンジドップラースペクトルと画像の両方からの密集したコンテキスト情報から恩恵を受ける。
論文 参考訳(メタデータ) (2023-07-17T04:25:46Z) - An Interactively Reinforced Paradigm for Joint Infrared-Visible Image
Fusion and Saliency Object Detection [59.02821429555375]
この研究は、野生の隠れた物体の発見と位置決めに焦点をあて、無人のシステムに役立てる。
経験的分析により、赤外線と可視画像融合(IVIF)は、難しい物体の発見を可能にする。
マルチモーダル・サリエント・オブジェクト検出(SOD)は、画像内の物体の正確な空間的位置を正確に記述する。
論文 参考訳(メタデータ) (2023-05-17T06:48:35Z) - Radar-Camera Fusion for Object Detection and Semantic Segmentation in
Autonomous Driving: A Comprehensive Review [7.835577409160127]
本稿では,物体検出とセマンティックセグメンテーションに関連する知覚タスクについて概説する。
レビューでは,「なぜフューズするか」,「何をフューズすべきか」,「どこでフューズするか」,「どのようにフューズするか」などの質問に対処する。
論文 参考訳(メタデータ) (2023-04-20T15:48:50Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
本研究の目的は、ADASおよび自動運転車のカメラおよびレーダーによる認識の現在のシナリオに関する研究を行うことである。
両センサと融合に関する概念と特徴を提示する。
本稿では、ディープラーニングに基づく検出とセグメンテーションタスクの概要と、車両の認識における主要なデータセット、メトリクス、課題、オープンな質問について説明する。
論文 参考訳(メタデータ) (2023-03-08T00:48:32Z) - MVFusion: Multi-View 3D Object Detection with Semantic-aligned Radar and
Camera Fusion [6.639648061168067]
マルチビューレーダーカメラで融合した3Dオブジェクト検出は、より遠くの検知範囲と自律運転に有用な機能を提供する。
現在のレーダーとカメラの融合方式は、レーダー情報をカメラデータで融合するための種類の設計を提供する。
セマンティック・アライメント・レーダ機能を実現するための新しいマルチビューレーダカメラフュージョン法であるMVFusionを提案する。
論文 参考訳(メタデータ) (2023-02-21T08:25:50Z) - DeepFusion: A Robust and Modular 3D Object Detector for Lidars, Cameras
and Radars [2.2166853714891057]
本研究では,ライダー,カメラ,レーダーを異なる組み合わせで融合して3次元物体検出を行うモジュール型マルチモーダルアーキテクチャを提案する。
特殊特徴抽出器は各モードの利点を生かし、容易に交換でき、アプローチをシンプルかつ柔軟にする。
Lidar-camera, lidar-camera-radar, camera-radar fusion の実験結果から, 融合法の柔軟性と有効性が確認された。
論文 参考訳(メタデータ) (2022-09-26T14:33:30Z) - Drone Detection and Tracking in Real-Time by Fusion of Different Sensing
Modalities [66.4525391417921]
マルチセンサ・ドローン検知システムの設計と評価を行う。
われわれのソリューションは、魚眼カメラを統合し、空の広い部分を監視し、他のカメラを興味ある対象に向けて操縦する。
このサーマルカメラは、たとえこのカメラが解像度が低いとしても、ビデオカメラと同じくらい実現可能なソリューションであることが示されている。
論文 参考訳(メタデータ) (2022-07-05T10:00:58Z) - Target-aware Dual Adversarial Learning and a Multi-scenario
Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection [65.30079184700755]
本研究は、物体検出のために異なるように見える赤外線と可視画像の融合の問題に対処する。
従来のアプローチでは、2つのモダリティの根底にある共通点を発見し、反復最適化またはディープネットワークによって共通空間に融合する。
本稿では、融合と検出の連立問題に対する二段階最適化の定式化を提案し、その後、核融合と一般的に使用される検出ネットワークのためのターゲット認識デュアル逆学習(TarDAL)ネットワークに展開する。
論文 参考訳(メタデータ) (2022-03-30T11:44:56Z) - Depth Estimation from Monocular Images and Sparse Radar Data [93.70524512061318]
本稿では,ディープニューラルネットワークを用いた単眼画像とレーダ点の融合により,より正確な深度推定を実現する可能性を検討する。
レーダ測定で発生するノイズが,既存の融合法の適用を妨げている主要な理由の1つであることが判明した。
実験はnuScenesデータセット上で行われ、カメラ、レーダー、LiDARの記録を様々な場面と気象条件で記録する最初のデータセットの1つである。
論文 参考訳(メタデータ) (2020-09-30T19:01:33Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
我々は、自動運転車の文脈における認識のためにRadarを利用する問題に取り組む。
我々は、LiDARとRadarの両方のセンサーを知覚に利用した新しいソリューションを提案する。
RadarNetと呼ばれる我々のアプローチは、ボクセルベースの早期核融合と注意に基づく後期核融合を特徴としている。
論文 参考訳(メタデータ) (2020-07-28T17:15:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。