Simmering: Sufficient is better than optimal for training neural networks
- URL: http://arxiv.org/abs/2410.19912v1
- Date: Fri, 25 Oct 2024 18:02:08 GMT
- Title: Simmering: Sufficient is better than optimal for training neural networks
- Authors: Irina Babayan, Hazhir Aliahmadi, Greg van Anders,
- Abstract summary: We introduce simmering, a physics-based method that trains neural networks to generate weights and biases that are merely good enough''
We show that simmering corrects neural networks that are overfit by Adam, and show that simmering avoids overfitting if deployed from the outset.
Our results question optimization as a paradigm for neural network training, and leverage information-geometric arguments to point to the existence of classes of sufficient training algorithms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The broad range of neural network training techniques that invoke optimization but rely on ad hoc modification for validity suggests that optimization-based training is misguided. Shortcomings of optimization-based training are brought to particularly strong relief by the problem of overfitting, where naive optimization produces spurious outcomes. The broad success of neural networks for modelling physical processes has prompted advances that are based on inverting the direction of investigation and treating neural networks as if they were physical systems in their own right These successes raise the question of whether broader, physical perspectives could motivate the construction of improved training algorithms. Here, we introduce simmering, a physics-based method that trains neural networks to generate weights and biases that are merely ``good enough'', but which, paradoxically, outperforms leading optimization-based approaches. Using classification and regression examples we show that simmering corrects neural networks that are overfit by Adam, and show that simmering avoids overfitting if deployed from the outset. Our results question optimization as a paradigm for neural network training, and leverage information-geometric arguments to point to the existence of classes of sufficient training algorithms that do not take optimization as their starting point.
Related papers
- Optimizers Qualitatively Alter Solutions And We Should Leverage This [62.662640460717476]
Deep Neural Networks (DNNs) can not guarantee convergence to a unique global minimum of the loss when using only local information, such as SGD.<n>We argue that the community should aim at understanding the biases of already existing methods, as well as aim to build new DNNs with the explicit intent of inducing certain properties of the solution.
arXiv Detail & Related papers (2025-07-16T13:33:31Z) - HiPreNets: High-Precision Neural Networks through Progressive Training [1.5429976366871665]
We present a framework for tuning and high-precision neural networks (HiPreNets)<n>Our approach refines a previously explored staged training technique for neural networks.<n>We discuss how to take advantage of the structure of the residuals to guide the choice loss function number parameters to use.
arXiv Detail & Related papers (2025-06-18T02:12:24Z) - Optimization over Trained (and Sparse) Neural Networks: A Surrogate within a Surrogate [5.718611740982005]
We use network pruning to produce a surrogate of the neural network itself.<n>We show that a pruned network with bad classification performance can still be a good - and more efficient - surrogate.
arXiv Detail & Related papers (2025-05-04T04:49:19Z) - Optimization Over Trained Neural Networks: Taking a Relaxing Walk [4.517039147450688]
We propose a more scalable solver based on exploring global and local linear relaxations of the neural network model.
Our solver is competitive with a state-of-the-art MILP solver and the prior while producing better solutions with increases in input, depth, and number of neurons.
arXiv Detail & Related papers (2024-01-07T11:15:00Z) - Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation [49.44309457870649]
Layer-wise Feedback feedback (LFP) is a novel training principle for neural network-like predictors.<n>LFP decomposes a reward to individual neurons based on their respective contributions.<n>Our method then implements a greedy reinforcing approach helpful parts of the network and weakening harmful ones.
arXiv Detail & Related papers (2023-08-23T10:48:28Z) - No Wrong Turns: The Simple Geometry Of Neural Networks Optimization
Paths [12.068608358926317]
First-order optimization algorithms are known to efficiently locate favorable minima in deep neural networks.
We focus on the fundamental geometric properties of sampled quantities of optimization on two key paths.
Our findings suggest that not only do optimization trajectories never encounter significant obstacles, but they also maintain stable dynamics during the majority of training.
arXiv Detail & Related papers (2023-06-20T22:10:40Z) - Acceleration techniques for optimization over trained neural network
ensembles [1.0323063834827415]
We study optimization problems where the objective function is modeled through feedforward neural networks with rectified linear unit activation.
We present a mixed-integer linear program based on existing popular big-$M$ formulations for optimizing over a single neural network.
arXiv Detail & Related papers (2021-12-13T20:50:54Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
deep equilibrium model is a class of models that foregoes traditional network depth and instead computes the output of a network by finding the fixed point of a single nonlinear layer.
We show that there is a natural synergy between these two settings.
We demonstrate this strategy on various tasks such as training generative models while optimizing over latent codes, training models for inverse problems like denoising and inpainting, adversarial training and gradient based meta-learning.
arXiv Detail & Related papers (2021-11-25T19:59:33Z) - DEBOSH: Deep Bayesian Shape Optimization [48.80431740983095]
We propose a novel uncertainty-based method tailored to shape optimization.
It enables effective BO and increases the quality of the resulting shapes beyond that of state-of-the-art approaches.
arXiv Detail & Related papers (2021-09-28T11:01:42Z) - Analytically Tractable Inference in Deep Neural Networks [0.0]
Tractable Approximate Inference (TAGI) algorithm was shown to be a viable and scalable alternative to backpropagation for shallow fully-connected neural networks.
We are demonstrating how TAGI matches or exceeds the performance of backpropagation, for training classic deep neural network architectures.
arXiv Detail & Related papers (2021-03-09T14:51:34Z) - Learning Neural Network Subspaces [74.44457651546728]
Recent observations have advanced our understanding of the neural network optimization landscape.
With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks.
With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks.
arXiv Detail & Related papers (2021-02-20T23:26:58Z) - Training Learned Optimizers with Randomly Initialized Learned Optimizers [49.67678615506608]
We show that a population of randomly learneds can be used to train themselves from scratch in an online fashion.
A form of population based training is used to orchestrate this self-training.
We believe feedback loops of this type will be important and powerful in the future of machine learning.
arXiv Detail & Related papers (2021-01-14T19:07:17Z) - Efficient and Sparse Neural Networks by Pruning Weights in a
Multiobjective Learning Approach [0.0]
We propose a multiobjective perspective on the training of neural networks by treating its prediction accuracy and the network complexity as two individual objective functions.
Preliminary numerical results on exemplary convolutional neural networks confirm that large reductions in the complexity of neural networks with neglibile loss of accuracy are possible.
arXiv Detail & Related papers (2020-08-31T13:28:03Z) - Understanding the Effects of Data Parallelism and Sparsity on Neural
Network Training [126.49572353148262]
We study two factors in neural network training: data parallelism and sparsity.
Despite their promising benefits, understanding of their effects on neural network training remains elusive.
arXiv Detail & Related papers (2020-03-25T10:49:22Z) - Large Batch Training Does Not Need Warmup [111.07680619360528]
Training deep neural networks using a large batch size has shown promising results and benefits many real-world applications.
In this paper, we propose a novel Complete Layer-wise Adaptive Rate Scaling (CLARS) algorithm for large-batch training.
Based on our analysis, we bridge the gap and illustrate the theoretical insights for three popular large-batch training techniques.
arXiv Detail & Related papers (2020-02-04T23:03:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.