論文の概要: Collaborative Inference over Wireless Channels with Feature Differential Privacy
- arxiv url: http://arxiv.org/abs/2410.19917v1
- Date: Fri, 25 Oct 2024 18:11:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:23:02.520030
- Title: Collaborative Inference over Wireless Channels with Feature Differential Privacy
- Title(参考訳): 異なるプライバシーを持つ無線チャネル上での協調的推論
- Authors: Mohamed Seif, Yuqi Nie, Andrea J. Goldsmith, H. Vincent Poor,
- Abstract要約: 複数の無線エッジデバイス間の協調推論は、人工知能(AI)アプリケーションを大幅に強化する可能性がある。
抽出された特徴を抽出することは、プロセス中に機密性の高い個人情報が暴露されるため、重大なプライバシーリスクをもたらす。
本稿では,ネットワーク内の各エッジデバイスが抽出された機能のプライバシを保護し,それらを中央サーバに送信して推論を行う,新たなプライバシ保存協調推論機構を提案する。
- 参考スコア(独自算出の注目度): 57.68286389879283
- License:
- Abstract: Collaborative inference among multiple wireless edge devices has the potential to significantly enhance Artificial Intelligence (AI) applications, particularly for sensing and computer vision. This approach typically involves a three-stage process: a) data acquisition through sensing, b) feature extraction, and c) feature encoding for transmission. However, transmitting the extracted features poses a significant privacy risk, as sensitive personal data can be exposed during the process. To address this challenge, we propose a novel privacy-preserving collaborative inference mechanism, wherein each edge device in the network secures the privacy of extracted features before transmitting them to a central server for inference. Our approach is designed to achieve two primary objectives: 1) reducing communication overhead and 2) ensuring strict privacy guarantees during feature transmission, while maintaining effective inference performance. Additionally, we introduce an over-the-air pooling scheme specifically designed for classification tasks, which provides formal guarantees on the privacy of transmitted features and establishes a lower bound on classification accuracy.
- Abstract(参考訳): 複数の無線エッジデバイス間での協調推論は、特にセンシングやコンピュータビジョンにおいて、人工知能(AI)アプリケーションを大幅に強化する可能性がある。
このアプローチには一般的に3段階のプロセスが必要です。
a) センシングによるデータ取得
b)特徴抽出,及び
c) 送信のための特徴符号化
しかし、抽出された特徴の伝達は、プロセス中に機密性の高い個人情報が暴露されるため、重大なプライバシー上のリスクをもたらす。
この課題に対処するために,ネットワーク内の各エッジデバイスが抽出した機能のプライバシを保護し,それらを中央サーバに送信して推論を行う,新たなプライバシ保存協調推論機構を提案する。
私たちのアプローチは2つの主要な目標を達成するために設計されています。
1)通信のオーバーヘッドを減らし
2) 効果的な推論性能を維持しつつ、特徴伝達時の厳格なプライバシー保証を確保すること。
さらに,分類タスクに特化して設計された無線プール方式を導入し,送信された特徴のプライバシに関する公式な保証と,分類精度の低いバウンダリを確立する。
関連論文リスト
- Masked Differential Privacy [64.32494202656801]
本稿では,差分プライバシーを適用した機密領域を制御できる「マスク型差分プライバシー(DP)」という効果的なアプローチを提案する。
提案手法はデータに基づいて選択的に動作し,DPアプリケーションや差分プライバシーをデータサンプル内の他のプライバシー技術と組み合わせることなく,非感性時間領域を定義できる。
論文 参考訳(メタデータ) (2024-10-22T15:22:53Z) - Over-the-Air Collaborative Inference with Feature Differential Privacy [8.099700053397278]
協調推論は、自律運転、個人識別、アクティビティ分類を含む人工知能(AI)の応用を強化することができる。
抽出された特徴の伝達は、機密性の高い個人情報を暴露する危険性を伴う。
新たなプライバシ保護協調推論機構が開発されている。
論文 参考訳(メタデータ) (2024-06-01T01:39:44Z) - Unified Mechanism-Specific Amplification by Subsampling and Group Privacy Amplification [54.1447806347273]
サブサンプリングによる増幅は、差分プライバシーを持つ機械学習の主要なプリミティブの1つである。
本稿では、メカニズム固有の保証を導出するための最初の一般的なフレームワークを提案する。
サブサンプリングが複数のユーザのプライバシに与える影響を分析する。
論文 参考訳(メタデータ) (2024-03-07T19:36:05Z) - Libertas: Privacy-Preserving Computation for Decentralised Personal Data Stores [19.54818218429241]
セキュアなマルチパーティ計算をSolidと統合するためのモジュール設計を提案する。
私たちのアーキテクチャであるLibertasでは、基盤となるSolidの設計にプロトコルレベルの変更は必要ありません。
既存の差分プライバシー技術と組み合わせて、出力プライバシーを確保する方法を示す。
論文 参考訳(メタデータ) (2023-09-28T12:07:40Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
本稿では,Diff-Privacyと呼ばれる拡散モデルに基づく顔のプライバシー保護手法を提案する。
具体的には、提案したマルチスケール画像インバージョンモジュール(MSI)をトレーニングし、元の画像のSDMフォーマット条件付き埋め込みのセットを得る。
本研究は,条件付き埋め込みに基づいて,組込みスケジューリング戦略を設計し,デノナイズプロセス中に異なるエネルギー関数を構築し,匿名化と視覚的アイデンティティ情報隠蔽を実現する。
論文 参考訳(メタデータ) (2023-09-11T09:26:07Z) - Flexible Differentially Private Vertical Federated Learning with
Adaptive Feature Embeddings [24.36847069007795]
垂直連合学習(VFL)は、プライバシー保護の欠陥に対する懸念を刺激している。
本稿では、データプライバシとVFLのタスクユーティリティ目標との微妙な均衡を差分プライバシー(DP)下で検討する。
我々は2つの目標を分離し、それらを順次解決するフレキシブルで汎用的なアプローチを提案する。
論文 参考訳(メタデータ) (2023-07-26T04:40:51Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
サーバが複数のユーザの協調的なデータ分析を,プライバシの懸念と限られた通信能力で調整する,フェデレートされたデータ分析問題を考える。
有限出力空間を有する離散値機構の局所的差分プライバシー保証を$f$-differential privacy (DP) レンズを用いて検討する。
より具体的には、様々な離散的評価機構の厳密な$f$-DP保証を導出することにより、既存の文献を前進させる。
論文 参考訳(メタデータ) (2023-02-19T16:58:53Z) - Graph-Homomorphic Perturbations for Private Decentralized Learning [64.26238893241322]
ローカルな見積もりの交換は、プライベートデータに基づくデータの推測を可能にする。
すべてのエージェントで独立して選択された摂動により、パフォーマンスが著しく低下する。
本稿では,特定のヌル空間条件に従って摂動を構成する代替スキームを提案する。
論文 参考訳(メタデータ) (2020-10-23T10:35:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。