論文の概要: Bridging Stepwise Lab-Informed Pretraining and Knowledge-Guided Learning for Diagnostic Reasoning
- arxiv url: http://arxiv.org/abs/2410.19955v2
- Date: Tue, 15 Apr 2025 23:36:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-17 20:12:20.851254
- Title: Bridging Stepwise Lab-Informed Pretraining and Knowledge-Guided Learning for Diagnostic Reasoning
- Title(参考訳): 診断推論のためのステップワイド・ラボインフォームド・プレトレーニングと知識指導型学習
- Authors: Pengfei Hu, Chang Lu, Fei Wang, Yue Ning,
- Abstract要約: 本稿では,2つの相補的な情報ソースを結合した2元検定フレームワークを提案する。
外部知識のために,大規模モデルによって強化された階層的言語と意味的関係をエンコードする診断知識グラフ(KG)を構築した。
そこで本研究では,臨床検査信号に基づく段階的推論プロセスに従ってモデルを誘導する,ラボインフォームド・プロキシータスクを提案する。
- 参考スコア(独自算出の注目度): 20.369746122143063
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the growing use of Electronic Health Records (EHR) for AI-assisted diagnosis prediction, most data-driven models struggle to incorporate clinically meaningful medical knowledge. They often rely on limited ontologies, lacking structured reasoning capabilities and comprehensive coverage. This raises an important research question: Will medical knowledge improve predictive models to support stepwise clinical reasoning as performed by human doctors? To address this problem, we propose DuaLK, a dual-expertise framework that combines two complementary sources of information. For external knowledge, we construct a Diagnosis Knowledge Graph (KG) that encodes both hierarchical and semantic relations enriched by large language models (LLM). To align with patient data, we further introduce a lab-informed proxy task that guides the model to follow a clinically consistent, stepwise reasoning process based on lab test signals. Experimental results on two public EHR datasets demonstrate that DuaLK consistently outperforms existing baselines across four clinical prediction tasks. These findings highlight the potential of combining structured medical knowledge with individual-level clinical signals to achieve more accurate and interpretable diagnostic predictions. The source code is publicly available on https://github.com/humphreyhuu/DuaLK.
- Abstract(参考訳): AIによる診断予測にElectronic Health Records(EHR)の利用が増えているにもかかわらず、ほとんどのデータ駆動モデルは、臨床的に意味のある医療知識を組み込むのに苦労している。
彼らはしばしば限定的なオントロジーに依存し、構造化された推論能力と包括的なカバレッジを欠いている。
これは重要な研究課題を提起する:医療知識は、人間の医師が行う段階的な臨床推論を支援するために予測モデルを改善するか?
この問題に対処するために,2つの相補的な情報ソースを組み合わせたデュアルエキスパートフレームワークであるDuaLKを提案する。
外部知識に対して,大規模言語モデル(LLM)に富んだ階層的・意味的関係を符号化した診断知識グラフ(KG)を構築する。
患者データに合わせるために、実験室検査信号に基づいて、臨床的に一貫した段階的推論プロセスに従うようモデルに誘導する、実験室インフォームド・プロキシータスクを導入する。
2つの公開EHRデータセットの実験結果は、DuaLKが4つの臨床予測タスクで既存のベースラインを一貫して上回っていることを示している。
これらの知見は、より正確かつ解釈可能な診断予測を実現するために、構造化された医療知識と個別の臨床信号を組み合わせる可能性を強調した。
ソースコードはhttps://github.com/humphreyhuu/DuaLK.comで公開されている。
関連論文リスト
- Citrus: Leveraging Expert Cognitive Pathways in a Medical Language Model for Advanced Medical Decision Support [22.40301339126307]
我々は、臨床専門知識とAI推論のギャップを埋める医療言語モデルであるCitrusを紹介する。
このモデルは、シミュレーションされた専門的疾患推論データの大規模なコーパスに基づいて訓練される。
我々は、独自の医療診断対話データセットを含む、最終段階のトレーニングデータをリリースする。
論文 参考訳(メタデータ) (2025-02-25T15:05:12Z) - Uncertainty-aware abstention in medical diagnosis based on medical texts [87.88110503208016]
本研究は,AI支援医療診断における信頼性の重要課題について論じる。
本研究は,診断に自信がなければ,診断システムによる意思決定の回避を可能にする選択予測手法に焦点をあてる。
我々は、選択予測タスクにおける信頼性を高めるための新しい最先端手法であるHUQ-2を紹介する。
論文 参考訳(メタデータ) (2025-02-25T10:15:21Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KAREは、知識グラフ(KG)コミュニティレベルの検索と大規模言語モデル(LLM)推論を統合する新しいフレームワークである。
MIMIC-IIIでは最大10.8~15.0%、MIMIC-IVでは12.6~12.7%である。
論文 参考訳(メタデータ) (2024-10-06T18:46:28Z) - Conversational Disease Diagnosis via External Planner-Controlled Large Language Models [18.93345199841588]
本研究は,医師のエミュレートによる計画能力の向上を目的としたLCMに基づく診断システムを提案する。
実際の患者電子カルテデータを利用して,仮想患者と医師とのシミュレーション対話を構築した。
論文 参考訳(メタデータ) (2024-04-04T06:16:35Z) - Next Visit Diagnosis Prediction via Medical Code-Centric Multimodal Contrastive EHR Modelling with Hierarchical Regularisation [0.0]
NECHOは,階層的正規化を伴う新しい医用コード中心のマルチモーダル・コントラスト学習フレームワークである。
まず, 医用コード, 人口統計, 臨床ノートを含む多面的情報をネットワーク設計を用いて統合する。
また,EHRデータの階層構造を学習するために,医療オントロジーにおける親レベル情報を用いてモダリティ固有のエンコーダを正規化する。
論文 参考訳(メタデータ) (2024-01-22T01:58:32Z) - Enabling Collaborative Clinical Diagnosis of Infectious Keratitis by
Integrating Expert Knowledge and Interpretable Data-driven Intelligence [28.144658552047975]
感染性角膜炎(IK)の診断における知識誘導診断モデル(KGDM)の性能,解釈可能性,臨床的有用性について検討した。
AIベースのバイオマーカーの診断確率比(DOR)は3.011から35.233の範囲で有効である。
コラボレーションの参加者は、人間とAIの両方を上回るパフォーマンスを達成した。
論文 参考訳(メタデータ) (2024-01-14T02:10:54Z) - Evaluating the Fairness of the MIMIC-IV Dataset and a Baseline
Algorithm: Application to the ICU Length of Stay Prediction [65.268245109828]
本稿では、MIMIC-IVデータセットを用いて、滞在時間を予測するXGBoostバイナリ分類モデルにおける公平性とバイアスについて検討する。
この研究は、人口統計属性にわたるデータセットのクラス不均衡を明らかにし、データ前処理と特徴抽出を採用する。
この論文は、偏見を緩和するための公正な機械学習技術と、医療専門家とデータサイエンティストの協力的な努力の必要性について結論付けている。
論文 参考訳(メタデータ) (2023-12-31T16:01:48Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
本研究は, 合併症リスク予測のシナリオを考察し, 患者の臨床状態に関する文脈に焦点を当てる。
我々は、リスク予測モデル推論に関する文脈を提示し、その受容性を評価するために、最先端のLLMをいくつか採用する。
本論文は,実世界における臨床症例における文脈説明の有効性と有用性を明らかにする最初のエンドツーエンド分析の1つである。
論文 参考訳(メタデータ) (2023-02-11T18:07:11Z) - DR.BENCH: Diagnostic Reasoning Benchmark for Clinical Natural Language
Processing [5.022185333260402]
診断推論ベンチマーク(DR.BENCH)は臨床診断推論能力を持つcNLPモデルの開発と評価のための新しいベンチマークである。
DR.BENCHは、訓練済みの言語モデルを評価するための自然言語生成フレームワークとして設計された最初の臨床スイートである。
論文 参考訳(メタデータ) (2022-09-29T16:05:53Z) - Modeling electronic health record data using a knowledge-graph-embedded
topic model [6.170782354287972]
エンド・ツー・エンドの知識グラフに基づくマルチモーダル組込みトピックモデルであるKG-ETMを提案する。
KG-ETMは、医療知識グラフから埋め込みを学習することで、HRデータから潜伏病トピックを抽出する。
また,本モデルでは,患者層化と薬剤推奨のための解釈可能かつ正確な患者表現も発見できる。
論文 参考訳(メタデータ) (2022-06-03T07:58:17Z) - VBridge: Connecting the Dots Between Features, Explanations, and Data
for Healthcare Models [85.4333256782337]
VBridgeは、臨床医の意思決定ワークフローに機械学習の説明をシームレスに組み込むビジュアル分析ツールである。
我々は,臨床医がMLの特徴に慣れていないこと,文脈情報の欠如,コホートレベルの証拠の必要性など,3つの重要な課題を特定した。
症例スタディと専門医4名のインタビューを通じて, VBridgeの有効性を実証した。
論文 参考訳(メタデータ) (2021-08-04T17:34:13Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
本稿では、医療表現学習と予測分析のための、エンドツーエンドの堅牢なトランスフォーマーベースのソリューション、患者旅行の相互統合、医療オントロジー(MIMO)を提案する。
論文 参考訳(メタデータ) (2021-07-20T07:04:52Z) - Self-Supervised Graph Learning with Hyperbolic Embedding for Temporal
Health Event Prediction [13.24834156675212]
本稿では,情報フローを組み込んだハイパーボリック埋め込み手法を提案する。
我々は、これらの事前学習された表現をグラフニューラルネットワークに組み込んで、疾患の合併症を検出する。
本稿では,EHRデータを完全に活用する自己教師付き学習フレームワークに,階層型で強化された履歴予測代行タスクを提案する。
論文 参考訳(メタデータ) (2021-06-09T00:42:44Z) - A causal learning framework for the analysis and interpretation of
COVID-19 clinical data [7.256237785391623]
ワークフローは、BSLを通じて患者の結果の主な原因を特定する、多段階のアプローチから成り立っている。
特徴量の多いCOVID-19データセットに対する我々のアプローチを評価し、提案フレームワークが結果に共同貢献する多要素プロセスのスキーマ的概要を提供することを示す。
対象者の85%の結果を3つの特徴のみに基づいて正確に予測する手法を考案した。
論文 参考訳(メタデータ) (2021-05-14T15:58:18Z) - IA-GCN: Interpretable Attention based Graph Convolutional Network for
Disease prediction [47.999621481852266]
タスクに対する入力特徴の臨床的関連性を解釈する,解釈可能なグラフ学習モデルを提案する。
臨床シナリオでは、そのようなモデルは、臨床専門家が診断および治療計画のためのより良い意思決定を支援することができる。
本研究では,Tadpoleの平均精度が3.2%,UKBBジェンダーが1.6%,UKBB年齢予測タスクが2%と,比較方法と比較して優れた性能を示した。
論文 参考訳(メタデータ) (2021-03-29T13:04:02Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
臨床診断は、臨床ノートに基づいて患者に診断符号を割り当てることを目的としており、臨床意思決定において重要な役割を担っている。
本稿では,臨床自動診断のための継承誘導階層と共起グラフの伝播を組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-01-27T13:16:51Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
本稿では,患者の医療旅行におけるコンテキスト依存と時間的関係を捉える,新たな自己注意機構を提案する。
エンド・ツー・エンドの双方向時間エンコーダネットワーク(BiteNet)が患者の旅路の表現を学習する。
実世界のEHRデータセットを用いた2つの教師付き予測と2つの教師なしクラスタリングタスクにおける手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-09-24T00:42:36Z) - CovidCare: Transferring Knowledge from Existing EMR to Emerging Epidemic
for Interpretable Prognosis [20.701122594508675]
新興感染症患者の予後を高めるための深層学習型アプローチであるCovidCareを提案する。
CovidCareは、トランスファーラーニングを通じて、大量の既存のEMRデータに基づいて、新型コロナウイルス関連の医療機能を組み込むことを学ぶ。
実際のCOVID-19データセット上で、患者に対する滞在予測実験の期間を延ばす。
論文 参考訳(メタデータ) (2020-07-17T09:20:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。