GHIL-Glue: Hierarchical Control with Filtered Subgoal Images
- URL: http://arxiv.org/abs/2410.20018v1
- Date: Sat, 26 Oct 2024 00:32:21 GMT
- Title: GHIL-Glue: Hierarchical Control with Filtered Subgoal Images
- Authors: Kyle B. Hatch, Ashwin Balakrishna, Oier Mees, Suraj Nair, Seohong Park, Blake Wulfe, Masha Itkina, Benjamin Eysenbach, Sergey Levine, Thomas Kollar, Benjamin Burchfiel,
- Abstract summary: Generative Hierarchical Imitation Learning-Glue (GHIL-Glue) is an interface to "glue together" language-conditioned image or video prediction models with low-level goal-conditioned policies.
GHIL-Glue filters out subgoals that do not lead to task progress and improves the robustness of goal-conditioned policies to generated subgoals with harmful visual artifacts.
We find in extensive experiments in both simulated and real environments that GHIL-Glue achieves a 25% improvement across several hierarchical models that leverage generative subgoals.
- Score: 68.36060286192262
- License:
- Abstract: Image and video generative models that are pre-trained on Internet-scale data can greatly increase the generalization capacity of robot learning systems. These models can function as high-level planners, generating intermediate subgoals for low-level goal-conditioned policies to reach. However, the performance of these systems can be greatly bottlenecked by the interface between generative models and low-level controllers. For example, generative models may predict photorealistic yet physically infeasible frames that confuse low-level policies. Low-level policies may also be sensitive to subtle visual artifacts in generated goal images. This paper addresses these two facets of generalization, providing an interface to effectively "glue together" language-conditioned image or video prediction models with low-level goal-conditioned policies. Our method, Generative Hierarchical Imitation Learning-Glue (GHIL-Glue), filters out subgoals that do not lead to task progress and improves the robustness of goal-conditioned policies to generated subgoals with harmful visual artifacts. We find in extensive experiments in both simulated and real environments that GHIL-Glue achieves a 25% improvement across several hierarchical models that leverage generative subgoals, achieving a new state-of-the-art on the CALVIN simulation benchmark for policies using observations from a single RGB camera. GHIL-Glue also outperforms other generalist robot policies across 3/4 language-conditioned manipulation tasks testing zero-shot generalization in physical experiments.
Related papers
- Reward Incremental Learning in Text-to-Image Generation [26.64026346266299]
We present Reward Incremental Distillation (RID), a method that mitigates forgetting with minimal computational overhead.
The experimental results demonstrate the efficacy of RID in achieving consistent, high-quality gradient generation in RIL scenarios.
arXiv Detail & Related papers (2024-11-26T10:54:33Z) - Dreamitate: Real-World Visuomotor Policy Learning via Video Generation [49.03287909942888]
We propose a visuomotor policy learning framework that fine-tunes a video diffusion model on human demonstrations of a given task.
We generate an example of an execution of the task conditioned on images of a novel scene, and use this synthesized execution directly to control the robot.
arXiv Detail & Related papers (2024-06-24T17:59:45Z) - Generative-Enhanced Heterogeneous Graph Contrastive Learning [11.118517297006894]
Heterogeneous Graphs (HGs) can effectively model complex relationships in the real world by multi-type nodes and edges.
In recent years, inspired by self-supervised learning, contrastive Heterogeneous Graphs Neural Networks (HGNNs) have shown great potential by utilizing data augmentation and contrastive discriminators for downstream tasks.
We propose a novel Generative-Enhanced Heterogeneous Graph Contrastive Learning (GHGCL)
arXiv Detail & Related papers (2024-04-03T15:31:18Z) - Foundation Policies with Hilbert Representations [54.44869979017766]
We propose an unsupervised framework to pre-train generalist policies from unlabeled offline data.
Our key insight is to learn a structured representation that preserves the temporal structure of the underlying environment.
Our experiments show that our unsupervised policies can solve goal-conditioned and general RL tasks in a zero-shot fashion.
arXiv Detail & Related papers (2024-02-23T19:09:10Z) - Bilevel Generative Learning for Low-Light Vision [64.77933848939327]
We propose a generic low-light vision solution by introducing a generative block to convert data from the RAW to the RGB domain.
This novel approach connects diverse vision problems by explicitly depicting data generation, which is the first in the field.
We develop two types of learning strategies targeting different goals, namely low cost and high accuracy, to acquire a new bilevel generative learning paradigm.
arXiv Detail & Related papers (2023-08-07T07:59:56Z) - InvGAN: Invertible GANs [88.58338626299837]
InvGAN, short for Invertible GAN, successfully embeds real images to the latent space of a high quality generative model.
This allows us to perform image inpainting, merging, and online data augmentation.
arXiv Detail & Related papers (2021-12-08T21:39:00Z) - Stronger Generalization Guarantees for Robot Learning by Combining
Generative Models and Real-World Data [5.935761705025763]
We provide a framework for providing generalization guarantees by leveraging a finite dataset of real-world environments.
We demonstrate our approach on two simulated systems with nonlinear/hybrid dynamics and rich sensing modalities.
arXiv Detail & Related papers (2021-11-16T20:13:10Z) - Deep Imitation Learning for Bimanual Robotic Manipulation [70.56142804957187]
We present a deep imitation learning framework for robotic bimanual manipulation.
A core challenge is to generalize the manipulation skills to objects in different locations.
We propose to (i) decompose the multi-modal dynamics into elemental movement primitives, (ii) parameterize each primitive using a recurrent graph neural network to capture interactions, and (iii) integrate a high-level planner that composes primitives sequentially and a low-level controller to combine primitive dynamics and inverse kinematics control.
arXiv Detail & Related papers (2020-10-11T01:40:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.