Reward Incremental Learning in Text-to-Image Generation
- URL: http://arxiv.org/abs/2411.17310v1
- Date: Tue, 26 Nov 2024 10:54:33 GMT
- Title: Reward Incremental Learning in Text-to-Image Generation
- Authors: Maorong Wang, Jiafeng Mao, Xueting Wang, Toshihiko Yamasaki,
- Abstract summary: We present Reward Incremental Distillation (RID), a method that mitigates forgetting with minimal computational overhead.
The experimental results demonstrate the efficacy of RID in achieving consistent, high-quality gradient generation in RIL scenarios.
- Score: 26.64026346266299
- License:
- Abstract: The recent success of denoising diffusion models has significantly advanced text-to-image generation. While these large-scale pretrained models show excellent performance in general image synthesis, downstream objectives often require fine-tuning to meet specific criteria such as aesthetics or human preference. Reward gradient-based strategies are promising in this context, yet existing methods are limited to single-reward tasks, restricting their applicability in real-world scenarios that demand adapting to multiple objectives introduced incrementally over time. In this paper, we first define this more realistic and unexplored problem, termed Reward Incremental Learning (RIL), where models are desired to adapt to multiple downstream objectives incrementally. Additionally, while the models adapt to the ever-emerging new objectives, we observe a unique form of catastrophic forgetting in diffusion model fine-tuning, affecting both metric-wise and visual structure-wise image quality. To address this catastrophic forgetting challenge, we propose Reward Incremental Distillation (RID), a method that mitigates forgetting with minimal computational overhead, enabling stable performance across sequential reward tasks. The experimental results demonstrate the efficacy of RID in achieving consistent, high-quality generation in RIL scenarios. The source code of our work will be publicly available upon acceptance.
Related papers
- Exploring Representation-Aligned Latent Space for Better Generation [86.45670422239317]
We introduce ReaLS, which integrates semantic priors to improve generation performance.
We show that fundamental DiT and SiT trained on ReaLS can achieve a 15% improvement in FID metric.
The enhanced semantic latent space enables more perceptual downstream tasks, such as segmentation and depth estimation.
arXiv Detail & Related papers (2025-02-01T07:42:12Z) - Visual Autoregressive Modeling for Image Super-Resolution [14.935662351654601]
We propose a novel visual autoregressive modeling for ISR framework with the form of next-scale prediction.
We collect large-scale data and design a training process to obtain robust generative priors.
arXiv Detail & Related papers (2025-01-31T09:53:47Z) - Boosting Alignment for Post-Unlearning Text-to-Image Generative Models [55.82190434534429]
Large-scale generative models have shown impressive image-generation capabilities, propelled by massive data.
This often inadvertently leads to the generation of harmful or inappropriate content and raises copyright concerns.
We propose a framework that seeks an optimal model update at each unlearning iteration, ensuring monotonic improvement on both objectives.
arXiv Detail & Related papers (2024-12-09T21:36:10Z) - Rejection Sampling IMLE: Designing Priors for Better Few-Shot Image
Synthesis [7.234618871984921]
An emerging area of research aims to learn deep generative models with limited training data.
We propose RS-IMLE, a novel approach that changes the prior distribution used for training.
This leads to substantially higher quality image generation compared to existing GAN and IMLE-based methods.
arXiv Detail & Related papers (2024-09-26T00:19:42Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - EsaCL: Efficient Continual Learning of Sparse Models [10.227171407348326]
Key challenge in the continual learning setting is to efficiently learn a sequence of tasks without forgetting how to perform previously learned tasks.
We propose a new method for efficient continual learning of sparse models (EsaCL) that can automatically prune redundant parameters without adversely impacting the model's predictive power.
arXiv Detail & Related papers (2024-01-11T04:59:44Z) - JoReS-Diff: Joint Retinex and Semantic Priors in Diffusion Model for Low-light Image Enhancement [69.6035373784027]
Low-light image enhancement (LLIE) has achieved promising performance by employing conditional diffusion models.
Previous methods may neglect the importance of a sufficient formulation of task-specific condition strategy.
We propose JoReS-Diff, a novel approach that incorporates Retinex- and semantic-based priors as the additional pre-processing condition.
arXiv Detail & Related papers (2023-12-20T08:05:57Z) - CoDi: Conditional Diffusion Distillation for Higher-Fidelity and Faster
Image Generation [49.3016007471979]
Large generative diffusion models have revolutionized text-to-image generation and offer immense potential for conditional generation tasks.
However, their widespread adoption is hindered by the high computational cost, which limits their real-time application.
We introduce a novel method dubbed CoDi, that adapts a pre-trained latent diffusion model to accept additional image conditioning inputs.
arXiv Detail & Related papers (2023-10-02T17:59:18Z) - A Generic Approach for Enhancing GANs by Regularized Latent Optimization [79.00740660219256]
We introduce a generic framework called em generative-model inference that is capable of enhancing pre-trained GANs effectively and seamlessly.
Our basic idea is to efficiently infer the optimal latent distribution for the given requirements using Wasserstein gradient flow techniques.
arXiv Detail & Related papers (2021-12-07T05:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.