emg2qwerty: A Large Dataset with Baselines for Touch Typing using Surface Electromyography
- URL: http://arxiv.org/abs/2410.20081v2
- Date: Mon, 04 Nov 2024 16:29:43 GMT
- Title: emg2qwerty: A Large Dataset with Baselines for Touch Typing using Surface Electromyography
- Authors: Viswanath Sivakumar, Jeffrey Seely, Alan Du, Sean R Bittner, Adam Berenzweig, Anuoluwapo Bolarinwa, Alexandre Gramfort, Michael I Mandel,
- Abstract summary: emg2qwerty is a large-scale dataset of non-invasive electromyographic signals recorded at the wrists while touch typing on a QWERTY keyboard.
With 1,135 sessions spanning 108 users and 346 hours of recording, this is the largest such public dataset to date.
We show strong baseline performance on predicting key-presses using sEMG signals alone.
- Score: 47.160223334501126
- License:
- Abstract: Surface electromyography (sEMG) non-invasively measures signals generated by muscle activity with sufficient sensitivity to detect individual spinal neurons and richness to identify dozens of gestures and their nuances. Wearable wrist-based sEMG sensors have the potential to offer low friction, subtle, information rich, always available human-computer inputs. To this end, we introduce emg2qwerty, a large-scale dataset of non-invasive electromyographic signals recorded at the wrists while touch typing on a QWERTY keyboard, together with ground-truth annotations and reproducible baselines. With 1,135 sessions spanning 108 users and 346 hours of recording, this is the largest such public dataset to date. These data demonstrate non-trivial, but well defined hierarchical relationships both in terms of the generative process, from neurons to muscles and muscle combinations, as well as in terms of domain shift across users and user sessions. Applying standard modeling techniques from the closely related field of Automatic Speech Recognition (ASR), we show strong baseline performance on predicting key-presses using sEMG signals alone. We believe the richness of this task and dataset will facilitate progress in several problems of interest to both the machine learning and neuroscientific communities. Dataset and code can be accessed at https://github.com/facebookresearch/emg2qwerty.
Related papers
- Machine Learning-based sEMG Signal Classification for Hand Gesture Recognition [3.9440964696313485]
EMG-based hand gesture recognition uses electromyographic(EMG) signals to interpret and classify hand movements.
This paper aims to benchmark the performance of EMG-based hand gesture recognition using novel feature extraction methods.
arXiv Detail & Related papers (2024-11-23T21:29:51Z) - Scaling Wearable Foundation Models [54.93979158708164]
We investigate the scaling properties of sensor foundation models across compute, data, and model size.
Using a dataset of up to 40 million hours of in-situ heart rate, heart rate variability, electrodermal activity, accelerometer, skin temperature, and altimeter per-minute data from over 165,000 people, we create LSM.
Our results establish the scaling laws of LSM for tasks such as imputation, extrapolation, both across time and sensor modalities.
arXiv Detail & Related papers (2024-10-17T15:08:21Z) - FORS-EMG: A Novel sEMG Dataset for Hand Gesture Recognition Across Multiple Forearm Orientations [1.3852370777848657]
Surface electromyography (sEMG) signals hold significant potential for gesture recognition and robust prosthetic hand development.
This study introduces a novel MFI sEMG dataset to evaluate commonly used hand gestures across three distinct orientations.
arXiv Detail & Related papers (2024-09-03T14:23:06Z) - EMGTFNet: Fuzzy Vision Transformer to decode Upperlimb sEMG signals for
Hand Gestures Recognition [0.1611401281366893]
We propose a Vision Transformer (ViT) based architecture with a Fuzzy Neural Block (FNB) called EMGTFNet to perform Hand Gesture Recognition.
The accuracy of the proposed model is tested using the publicly available NinaPro database consisting of 49 different hand gestures.
arXiv Detail & Related papers (2023-09-23T18:55:26Z) - A Convolutional Spiking Network for Gesture Recognition in
Brain-Computer Interfaces [0.8122270502556371]
We propose a simple yet efficient machine learning-based approach for the exemplary problem of hand gesture classification based on brain signals.
We demonstrate that this approach generalizes to different subjects with both EEG and ECoG data and achieves superior accuracy in the range of 92.74-97.07%.
arXiv Detail & Related papers (2023-04-21T16:23:40Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - Mobile Behavioral Biometrics for Passive Authentication [65.94403066225384]
This work carries out a comparative analysis of unimodal and multimodal behavioral biometric traits.
Experiments are performed over HuMIdb, one of the largest and most comprehensive freely available mobile user interaction databases.
In our experiments, the most discriminative background sensor is the magnetometer, whereas among touch tasks the best results are achieved with keystroke.
arXiv Detail & Related papers (2022-03-14T17:05:59Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
We propose a cross-verified feature disentangling strategy to disentangle the physiological features with non-physiological representations.
We then use the distilled physiological features for robust multi-task physiological measurements.
The disentangled features are finally used for the joint prediction of multiple physiological signals like average HR values and r signals.
arXiv Detail & Related papers (2020-07-16T09:39:17Z) - ST-MNIST -- The Spiking Tactile MNIST Neuromorphic Dataset [13.270250399169104]
We debut a novel neuromorphic Spiking Tactile MNIST dataset, which comprises handwritten digits obtained by human participants writing on a tactile neuromorphic sensor array.
We also describe an initial effort to evaluate our ST-MNIST dataset using existing artificial spiking and neural network models.
arXiv Detail & Related papers (2020-05-08T23:44:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.