Finger Force Decoding from Motor Units Activity on Neuromorphic Hardware
- URL: http://arxiv.org/abs/2507.23474v1
- Date: Thu, 31 Jul 2025 11:55:02 GMT
- Title: Finger Force Decoding from Motor Units Activity on Neuromorphic Hardware
- Authors: Farah Baracat, Giacomo Indiveri, Elisa Donati,
- Abstract summary: We propose a novel approach to perform finger force regression using spike trains from individual motor neurons.<n>These biologically grounded signals drive a spiking neural network implemented on a mixed-signal neuromorphic processor.<n>This is the first demonstration of motor neuron-based continuous regression computed directly on neuromorphic hardware.
- Score: 1.8754256211583082
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate finger force estimation is critical for next-generation human-machine interfaces. Traditional electromyography (EMG)-based decoding methods using deep learning require large datasets and high computational resources, limiting their use in real-time, embedded systems. Here, we propose a novel approach that performs finger force regression using spike trains from individual motor neurons, extracted from high-density EMG. These biologically grounded signals drive a spiking neural network implemented on a mixed-signal neuromorphic processor. Unlike prior work that encodes EMG into events, our method exploits spike timing on motor units to perform low-power, real-time inference. This is the first demonstration of motor neuron-based continuous regression computed directly on neuromorphic hardware. Our results confirm accurate finger-specific force prediction with minimal energy use, opening new possibilities for embedded decoding in prosthetics and wearable neurotechnology.
Related papers
- Generalizable, real-time neural decoding with hybrid state-space models [12.37704585793711]
We present POSSM, a novel hybrid architecture that combines individual spike tokenization via a cross-attention module with a recurrent state-space model (SSM) backbone.<n>We evaluate POSSM's decoding performance and inference speed on intracortical decoding of monkey motor tasks, and show that it extends to clinical applications.<n>In all of these tasks, we find that POSSM achieves decoding accuracy comparable to state-of-the-art Transformers, at a fraction of the inference cost.
arXiv Detail & Related papers (2025-06-05T17:57:08Z) - Event-Driven Implementation of a Physical Reservoir Computing Framework for superficial EMG-based Gesture Recognition [2.222098162797332]
This paper explores a novel neuromorphic implementation approach for gesture recognition by extracting spiking information from surface electromyography (sEMG) data in an event-driven manner.<n>The network was designed by implementing a simple-structured and hardware-friendly Physical Reservoir Computing framework called Rotating Neuron Reservoir (RNR) within the domain of Spiking neural network (SNN)<n>The proposed system was validated by an open-access large-scale sEMG database and achieved an average classification accuracy of 74.6% and 80.3%.
arXiv Detail & Related papers (2025-03-10T17:18:14Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Hybrid Spiking Neural Networks for Low-Power Intra-Cortical Brain-Machine Interfaces [42.72938925647165]
Intra-cortical brain-machine interfaces (iBMIs) have the potential to dramatically improve the lives of people with paraplegia.
Current iBMIs suffer from scalability and mobility limitations due to bulky hardware and wiring.
We are investigating hybrid spiking neural networks for embedded neural decoding in wireless iBMIs.
arXiv Detail & Related papers (2024-09-06T17:48:44Z) - Single Neuromorphic Memristor closely Emulates Multiple Synaptic
Mechanisms for Energy Efficient Neural Networks [71.79257685917058]
We demonstrate memristive nano-devices based on SrTiO3 that inherently emulate all these synaptic functions.
These memristors operate in a non-filamentary, low conductance regime, which enables stable and energy efficient operation.
arXiv Detail & Related papers (2024-02-26T15:01:54Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Low Power Neuromorphic EMG Gesture Classification [3.8761525368152725]
Spiking Neural Networks (SNNs) are promising for low-power, real-time EMG gesture recognition.
We present low-power, high accuracy demonstration of EMG-signal based gesture recognition using neuromorphic Recurrent Spiking Neural Networks (RSNN)
Our network achieves state-of-the-art accuracy classification (90%) while using 53% than best reported art on Roshambo EMG dataset.
arXiv Detail & Related papers (2022-06-04T22:09:34Z) - Braille Letter Reading: A Benchmark for Spatio-Temporal Pattern
Recognition on Neuromorphic Hardware [50.380319968947035]
Recent deep learning approaches have reached accuracy in such tasks, but their implementation on conventional embedded solutions is still computationally very and energy expensive.
We propose a new benchmark for computing tactile pattern recognition at the edge through letters reading.
We trained and compared feed-forward and recurrent spiking neural networks (SNNs) offline using back-propagation through time with surrogate gradients, then we deployed them on the Intel Loihimorphic chip for efficient inference.
Our results show that the LSTM outperforms the recurrent SNN in terms of accuracy by 14%. However, the recurrent SNN on Loihi is 237 times more energy
arXiv Detail & Related papers (2022-05-30T14:30:45Z) - Neuromorphic Artificial Intelligence Systems [58.1806704582023]
Modern AI systems, based on von Neumann architecture and classical neural networks, have a number of fundamental limitations in comparison with the brain.
This article discusses such limitations and the ways they can be mitigated.
It presents an overview of currently available neuromorphic AI projects in which these limitations are overcome.
arXiv Detail & Related papers (2022-05-25T20:16:05Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
We investigate the potential of Intel's fifth generation neuromorphic chip - Loihi'
Loihi is based on the novel idea of Spiking Neural Networks (SNNs) emulating the neurons in the brain.
We find that Loihi replicates classical simulations very efficiently and scales notably well in terms of both time and energy performance as the networks get larger.
arXiv Detail & Related papers (2021-09-22T16:52:51Z) - Closed-Loop Neural Interfaces with Embedded Machine Learning [12.977151652608047]
We review the recent developments in embedding machine learning in neural interfaces.
We present our optimized tree-based model for low-power and memory-efficient classification of neural signal in brain implants.
Using energy-aware learning and model compression, we show that the proposed oblique trees can outperform conventional machine learning models in applications such as seizure or tremor detection and motor decoding.
arXiv Detail & Related papers (2020-10-15T14:34:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.