Generalized and new solutions of the NRT nonlinear Schrödinger equation
- URL: http://arxiv.org/abs/2410.20228v1
- Date: Sat, 26 Oct 2024 17:02:33 GMT
- Title: Generalized and new solutions of the NRT nonlinear Schrödinger equation
- Authors: P. R. Gordoa, A. Pickering, D. Puertas-Centeno, E. V. Toranzo,
- Abstract summary: We present new solutions of the non-linear Schr"oodinger equation proposed by Nobre, Rego-Monteiro and Tsallis for the free particle.
Analytical expressions for the wave function, the auxiliary field and the probability density are derived using a variety of approaches.
- Score: 0.0
- License:
- Abstract: In this paper we present new solutions of the non-linear Schr\"oodinger equation proposed by Nobre, Rego-Monteiro and Tsallis for the free particle, obtained from different Lie symmetry reductions. Analytical expressions for the wave function, the auxiliary field and the probability density are derived using a variety of approaches. Solutions involving elliptic functions, Bessel and modified Bessel functions, as well as the inverse error function are found, amongst others. On the other hand, a closed-form expression for the general solution of the traveling wave ansatz (see Bountis and Nobre) is obtained for any real value of the nonlinearity index. This is achieved through the use of the so-called generalized trigonometric functions as defined by Lindqvist and Dr\'abek, the utility of which in analyzing the equation under study is highlighted throughout the paper.
Related papers
- Quantitative Approximation for Neural Operators in Nonlinear Parabolic Equations [0.40964539027092917]
We derive the approximation rate of solution operators for the nonlinear parabolic partial differential equations (PDEs)
Our results show that neural operators can efficiently approximate these solution operators without the exponential growth in model complexity.
A key insight in our proof is to transfer PDEs into the corresponding integral equations via Duahamel's principle, and to leverage the similarity between neural operators and Picard's iteration.
arXiv Detail & Related papers (2024-10-03T02:28:17Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
We propose an approximate Bayesian method for quantifying the total uncertainty in inverse PDE solutions obtained with machine learning surrogate models.
We test the proposed framework by comparing it with the iterative ensemble smoother and deep ensembling methods for a non-linear diffusion equation.
arXiv Detail & Related papers (2024-08-20T19:06:02Z) - Nonlinear functionals of master equation unravelings [0.0]
The trajectories generated by unravelings may also be treated as real -- as in the collapse models.
Two types of nonlinear functionals are considered here: variance, and entropy.
In the case of entropy, these corrections are shown to be negative, expressing the localization introduced by the Lindblad operators.
arXiv Detail & Related papers (2024-02-08T02:21:23Z) - Conformal duality of the nonlinear Schrödinger equation: Theory and applications to parameter estimation [0.09782246441301058]
We present the unified theory of the nonlinear Schr"odinger equation (NLSE)
All stationary solutions of the local one-dimensional cubic-quintic NLSE can be classified according to a single number called the cross-ratio.
Any two solutions with the same cross-ratio can be converted into one another using a conformal transformation.
arXiv Detail & Related papers (2023-06-30T15:03:51Z) - The Schr\"odinger equation for the Rosen-Morse type potential revisited
with applications [0.0]
We rigorously solve the time-independent Schr"odinger equation for the Rosen-Morse type potential.
The resolution of this problem is used to show that the kinks of the non-linear Klein-Gordon equation with $varphi2p+2$ type potentials are stable.
arXiv Detail & Related papers (2023-04-12T18:43:39Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Calculation of the wave functions of a quantum asymmetric top using the
noncommutative integration method [0.0]
We obtain a complete set of solutions to the Schrodinger equation for a quantum asymmetric top in Euler angles.
The spectrum of an asymmetric top is obtained from the condition that the solutions are in with respect to a special irreducible $lambda$-representation of the rotation group.
arXiv Detail & Related papers (2022-11-27T12:38:22Z) - Experimental Design for Linear Functionals in Reproducing Kernel Hilbert
Spaces [102.08678737900541]
We provide algorithms for constructing bias-aware designs for linear functionals.
We derive non-asymptotic confidence sets for fixed and adaptive designs under sub-Gaussian noise.
arXiv Detail & Related papers (2022-05-26T20:56:25Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
We study methods that use a collection of random observations to compute approximate solutions by searching over a known low-dimensional subspace of the Hilbert space.
We show how our results precisely characterize the error of a class of temporal difference learning methods for the policy evaluation problem with linear function approximation.
arXiv Detail & Related papers (2020-12-09T20:19:32Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.