Adaptive Video Understanding Agent: Enhancing efficiency with dynamic frame sampling and feedback-driven reasoning
- URL: http://arxiv.org/abs/2410.20252v1
- Date: Sat, 26 Oct 2024 19:01:06 GMT
- Title: Adaptive Video Understanding Agent: Enhancing efficiency with dynamic frame sampling and feedback-driven reasoning
- Authors: Sullam Jeoung, Goeric Huybrechts, Bhavana Ganesh, Aram Galstyan, Sravan Bodapati,
- Abstract summary: We propose an agent-based approach to enhance both the efficiency and effectiveness of long-form video understanding.
A key aspect of our method is query-adaptive frame sampling, which leverages the reasoning capabilities of LLMs to process only the most relevant frames in real-time.
We evaluate our method across several video understanding benchmarks and demonstrate that not only it enhances state-of-the-art performance but also improves efficiency by reducing the number of frames sampled.
- Score: 29.89820310679906
- License:
- Abstract: Understanding long-form video content presents significant challenges due to its temporal complexity and the substantial computational resources required. In this work, we propose an agent-based approach to enhance both the efficiency and effectiveness of long-form video understanding by utilizing large language models (LLMs) and their tool-harnessing ability. A key aspect of our method is query-adaptive frame sampling, which leverages the reasoning capabilities of LLMs to process only the most relevant frames in real-time, and addresses an important limitation of existing methods which typically involve sampling redundant or irrelevant frames. To enhance the reasoning abilities of our video-understanding agent, we leverage the self-reflective capabilities of LLMs to provide verbal reinforcement to the agent, which leads to improved performance while minimizing the number of frames accessed. We evaluate our method across several video understanding benchmarks and demonstrate that not only it enhances state-of-the-art performance but also improves efficiency by reducing the number of frames sampled.
Related papers
- Free Video-LLM: Prompt-guided Visual Perception for Efficient Training-free Video LLMs [56.040198387038025]
We present a novel prompt-guided visual perception framework (abbreviated as Free Video-LLM) for efficient inference of training-free video LLMs.
Our method effectively reduces the number of visual tokens while maintaining high performance across multiple video question-answering benchmarks.
arXiv Detail & Related papers (2024-10-14T12:35:12Z) - Video Token Sparsification for Efficient Multimodal LLMs in Autonomous Driving [9.900979396513687]
Multimodal large language models (MLLMs) have demonstrated remarkable potential for enhancing scene understanding in autonomous driving systems.
One major limitation arises from the large number of visual tokens required to capture fine-grained and long-context visual information.
We propose Video Token Sparsification (VTS) to significantly reduce the total number of visual tokens while preserving the most salient information.
arXiv Detail & Related papers (2024-09-16T05:31:01Z) - LADDER: An Efficient Framework for Video Frame Interpolation [12.039193291203492]
Video Frame Interpolation (VFI) is a crucial technique in various applications such as slow-motion generation, frame rate conversion, video frame restoration etc.
This paper introduces an efficient video frame framework that aims to strike a favorable balance between efficiency and quality.
arXiv Detail & Related papers (2024-04-17T06:47:17Z) - VURF: A General-purpose Reasoning and Self-refinement Framework for Video Understanding [65.12464615430036]
This paper introduces a Video Understanding and Reasoning Framework (VURF) based on the reasoning power of Large Language Models (LLMs)
Ours is a novel approach to extend the utility of LLMs in the context of video tasks.
We harness their contextual learning capabilities to generate executable visual programs for video understanding.
arXiv Detail & Related papers (2024-03-21T18:00:00Z) - CREMA: Generalizable and Efficient Video-Language Reasoning via Multimodal Modular Fusion [58.15403987979496]
CREMA is a generalizable, highly efficient, and modular modality-fusion framework for video reasoning.
We propose a novel progressive multimodal fusion design supported by a lightweight fusion module and modality-sequential training strategy.
We validate our method on 7 video-language reasoning tasks assisted by diverse modalities, including VideoQA and Video-Audio/3D/Touch/Thermal QA.
arXiv Detail & Related papers (2024-02-08T18:27:22Z) - Can SAM Boost Video Super-Resolution? [78.29033914169025]
We propose a simple yet effective module -- SAM-guidEd refinEment Module (SEEM)
This light-weight plug-in module is specifically designed to leverage the attention mechanism for the generation of semantic-aware feature.
We apply our SEEM to two representative methods, EDVR and BasicVSR, resulting in consistently improved performance with minimal implementation effort.
arXiv Detail & Related papers (2023-05-11T02:02:53Z) - An Efficient Recurrent Adversarial Framework for Unsupervised Real-Time
Video Enhancement [132.60976158877608]
We propose an efficient adversarial video enhancement framework that learns directly from unpaired video examples.
In particular, our framework introduces new recurrent cells that consist of interleaved local and global modules for implicit integration of spatial and temporal information.
The proposed design allows our recurrent cells to efficiently propagate-temporal-information across frames and reduces the need for high complexity networks.
arXiv Detail & Related papers (2020-12-24T00:03:29Z) - Video Face Super-Resolution with Motion-Adaptive Feedback Cell [90.73821618795512]
Video super-resolution (VSR) methods have recently achieved a remarkable success due to the development of deep convolutional neural networks (CNN)
In this paper, we propose a Motion-Adaptive Feedback Cell (MAFC), a simple but effective block, which can efficiently capture the motion compensation and feed it back to the network in an adaptive way.
arXiv Detail & Related papers (2020-02-15T13:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.