ReAgent-V: A Reward-Driven Multi-Agent Framework for Video Understanding
- URL: http://arxiv.org/abs/2506.01300v1
- Date: Mon, 02 Jun 2025 04:23:21 GMT
- Title: ReAgent-V: A Reward-Driven Multi-Agent Framework for Video Understanding
- Authors: Yiyang Zhou, Yangfan He, Yaofeng Su, Siwei Han, Joel Jang, Gedas Bertasius, Mohit Bansal, Huaxiu Yao,
- Abstract summary: ReAgent-V is a novel agentic video understanding framework.<n>It integrates efficient frame selection with real-time reward generation during inference.<n>Extensive experiments on 12 datasets demonstrate significant gains in generalization and reasoning.
- Score: 71.654781631463
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video understanding is fundamental to tasks such as action recognition, video reasoning, and robotic control. Early video understanding methods based on large vision-language models (LVLMs) typically adopt a single-pass reasoning paradigm without dynamic feedback, limiting the model's capacity to self-correct and adapt in complex scenarios. Recent efforts have attempted to address this limitation by incorporating reward models and reinforcement learning to enhance reasoning, or by employing tool-agent frameworks. However, these approaches face several challenges, including high annotation costs, reward signals that fail to capture real-time reasoning states, and low inference efficiency. To overcome these issues, we propose ReAgent-V, a novel agentic video understanding framework that integrates efficient frame selection with real-time reward generation during inference. These reward signals not only guide iterative answer refinement through a multi-perspective reflection mechanism-adjusting predictions from conservative, neutral, and aggressive viewpoints-but also enable automatic filtering of high-quality data for supervised fine-tuning (SFT), direct preference optimization (DPO), and group relative policy optimization (GRPO). ReAgent-V is lightweight, modular, and extensible, supporting flexible tool integration tailored to diverse tasks. Extensive experiments on 12 datasets across three core applications-video understanding, video reasoning enhancement, and vision-language-action model alignment-demonstrate significant gains in generalization and reasoning, with improvements of up to 6.9%, 2.1%, and 9.8%, respectively, highlighting the effectiveness and versatility of the proposed framework.
Related papers
- Light-IF: Endowing LLMs with Generalizable Reasoning via Preview and Self-Checking for Complex Instruction Following [10.119219532863767]
lazy reasoning during the thinking stage is the primary factor contributing to poor instruction adherence.<n>We propose a comprehensive framework designed to enable rigorous reasoning processes involving preview and self-checking.<n>Our Light-IF-32B model surpasses both larger open-source models such as DeepSeek-R1 and closed-source models like Doubao-1.6.
arXiv Detail & Related papers (2025-08-05T07:42:00Z) - Team of One: Cracking Complex Video QA with Model Synergy [24.75732964829523]
We propose a novel framework for open-ended video question answering that enhances reasoning depth and robustness in complex real-world scenarios.<n>Existing Video-Large Multimodal Models (Video-LMMs) often exhibit limited contextual understanding, weak temporal modeling, and poor generalization to ambiguous or compositional queries.
arXiv Detail & Related papers (2025-07-18T11:12:44Z) - Reinforcement Learning Tuning for VideoLLMs: Reward Design and Data Efficiency [56.475612147721264]
We propose a dual-reward formulation that supervises both semantic and temporal reasoning through discrete and continuous reward signals.<n>We evaluate our approach across eight representative video understanding tasks, including VideoQA, Temporal Video Grounding, and Grounded VideoQA.<n>Results underscore the importance of reward design and data selection in advancing reasoning-centric video understanding with MLLMs.
arXiv Detail & Related papers (2025-06-02T17:28:26Z) - ViaRL: Adaptive Temporal Grounding via Visual Iterated Amplification Reinforcement Learning [68.76048244253582]
We introduce ViaRL, the first framework to leverage rule-based reinforcement learning (RL) for optimizing frame selection in video understanding.<n>ViaRL utilizes the answer accuracy of a downstream model as a reward signal to train a frame selector through trial-and-error.<n>ViaRL consistently delivers superior temporal grounding performance and robust generalization across diverse video understanding tasks.
arXiv Detail & Related papers (2025-05-21T12:29:40Z) - Exploring the Effect of Reinforcement Learning on Video Understanding: Insights from SEED-Bench-R1 [53.894789613838654]
We introduce SEED-Bench-R1, a benchmark designed to evaluate post-training methods for MLLMs in video understanding.<n>It includes intricate real-world videos and complex everyday planning tasks in the format of multiple-choice questions.<n>Using Qwen2-VL-Instruct-7B as a base model, we compare RL with supervised fine-tuning (SFT)<n>Our detailed analysis reveals that RL enhances visual perception but often produces less coherent reasoning chains.
arXiv Detail & Related papers (2025-03-31T17:55:23Z) - Self-Consistent Model-based Adaptation for Visual Reinforcement Learning [27.701421196547674]
Visual reinforcement learning agents face serious performance declines in real-world applications caused by visual distractions.<n>Existing methods rely on fine-tuning the policy's representations with hand-crafted augmentations.<n>We propose Self-Consistent Model-based Adaptation (SCMA), a novel method that fosters robust adaptation without modifying the policy.
arXiv Detail & Related papers (2025-02-14T05:23:56Z) - STEP: Enhancing Video-LLMs' Compositional Reasoning by Spatio-Temporal Graph-guided Self-Training [87.58996020705258]
Video Large Language Models (Video-LLMs) have recently shown strong derivation in basic video understanding tasks.<n>Video-LLMs struggle with compositional reasoning that requires multi-step explicit-temporal inference across object relations, interactions and events.<n>We propose STEP, a novel graph-guided self-training method that enables VideoLLMs to generate reasoning-rich finetuning data from any raw videos to improve itself.
arXiv Detail & Related papers (2024-11-29T11:54:55Z) - Adaptive Video Understanding Agent: Enhancing efficiency with dynamic frame sampling and feedback-driven reasoning [29.89820310679906]
We propose an agent-based approach to enhance both the efficiency and effectiveness of long-form video understanding.
A key aspect of our method is query-adaptive frame sampling, which leverages the reasoning capabilities of LLMs to process only the most relevant frames in real-time.
We evaluate our method across several video understanding benchmarks and demonstrate that not only it enhances state-of-the-art performance but also improves efficiency by reducing the number of frames sampled.
arXiv Detail & Related papers (2024-10-26T19:01:06Z) - CREMA: Generalizable and Efficient Video-Language Reasoning via Multimodal Modular Fusion [58.15403987979496]
CREMA is a generalizable, highly efficient, and modular modality-fusion framework for video reasoning.<n>We propose a novel progressive multimodal fusion design supported by a lightweight fusion module and modality-sequential training strategy.<n>We validate our method on 7 video-language reasoning tasks assisted by diverse modalities, including VideoQA and Video-Audio/3D/Touch/Thermal QA.
arXiv Detail & Related papers (2024-02-08T18:27:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.