MarDini: Masked Autoregressive Diffusion for Video Generation at Scale
- URL: http://arxiv.org/abs/2410.20280v1
- Date: Sat, 26 Oct 2024 21:12:32 GMT
- Title: MarDini: Masked Autoregressive Diffusion for Video Generation at Scale
- Authors: Haozhe Liu, Shikun Liu, Zijian Zhou, Mengmeng Xu, Yanping Xie, Xiao Han, Juan C. Pérez, Ding Liu, Kumara Kahatapitiya, Menglin Jia, Jui-Chieh Wu, Sen He, Tao Xiang, Jürgen Schmidhuber, Juan-Manuel Pérez-Rúa,
- Abstract summary: MarDini is a new family of video diffusion models that integrate the advantages of masked auto-regression into a unified diffusion model (DM) framework.
MarDini sets a new state-of-the-art for videogression; it efficiently generates videos on par with those of much more expensive advanced image-to-video models.
- Score: 76.84820168294586
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce MarDini, a new family of video diffusion models that integrate the advantages of masked auto-regression (MAR) into a unified diffusion model (DM) framework. Here, MAR handles temporal planning, while DM focuses on spatial generation in an asymmetric network design: i) a MAR-based planning model containing most of the parameters generates planning signals for each masked frame using low-resolution input; ii) a lightweight generation model uses these signals to produce high-resolution frames via diffusion de-noising. MarDini's MAR enables video generation conditioned on any number of masked frames at any frame positions: a single model can handle video interpolation (e.g., masking middle frames), image-to-video generation (e.g., masking from the second frame onward), and video expansion (e.g., masking half the frames). The efficient design allocates most of the computational resources to the low-resolution planning model, making computationally expensive but important spatio-temporal attention feasible at scale. MarDini sets a new state-of-the-art for video interpolation; meanwhile, within few inference steps, it efficiently generates videos on par with those of much more expensive advanced image-to-video models.
Related papers
- VideoMAR: Autoregressive Video Generatio with Continuous Tokens [33.906543515428424]
Masked-based autoregressive models have demonstrated promising image generation capability in continuous space.<n>We propose textbfVideoMAR, a decoder-only autoregressive image-to-video model with continuous tokens.<n>VideoMAR surpasses the previous state-of-the-art (Cosmos I2V) while requiring significantly fewer parameters.
arXiv Detail & Related papers (2025-06-17T04:08:18Z) - HMAR: Efficient Hierarchical Masked Auto-Regressive Image Generation [91.08481618973111]
Visual Auto-Regressive modeling ( VAR) has shown promise in bridging the speed and quality gap between autoregressive image models and diffusion models.<n>We introduce Hierarchical Masked Auto-Regressive modeling (HMAR) to generate high-quality images with fast sampling.<n>HMAR reformulates next-scale prediction as a Markovian process, wherein the prediction of each resolution scale is conditioned only on tokens in its immediate predecessor.
arXiv Detail & Related papers (2025-06-04T20:08:07Z) - Adapting Image-to-Video Diffusion Models for Large-Motion Frame Interpolation [0.0]
We present a conditional encoder designed to adapt an image-to-video model for a large-motion frame.
To enhance performance, we integrate a dual-branch feature extractor and propose a cross-frame attention mechanism.
Our approach demonstrates superior performance on the Fr'teche Video Distance metric when evaluated against other state-of-the-art approaches.
arXiv Detail & Related papers (2024-12-22T14:49:55Z) - VISION-XL: High Definition Video Inverse Problem Solver using Latent Image Diffusion Models [58.464465016269614]
We propose a novel framework for solving high-definition video inverse problems using latent image diffusion models.
Our approach delivers HD-resolution reconstructions in under 6 seconds per frame on a single NVIDIA 4090 GPU.
arXiv Detail & Related papers (2024-11-29T08:10:49Z) - Multimodal Instruction Tuning with Hybrid State Space Models [25.921044010033267]
Long context is crucial for enhancing the recognition and understanding capabilities of multimodal large language models.
We propose a novel approach using a hybrid transformer-MAMBA model to efficiently handle long contexts in multimodal applications.
Our model enhances inference efficiency for high-resolution images and high-frame-rate videos by about 4 times compared to current models.
arXiv Detail & Related papers (2024-11-13T18:19:51Z) - MMAR: Towards Lossless Multi-Modal Auto-Regressive Probabilistic Modeling [64.09238330331195]
We propose a novel Multi-Modal Auto-Regressive (MMAR) probabilistic modeling framework.
Unlike discretization line of method, MMAR takes in continuous-valued image tokens to avoid information loss.
We show that MMAR demonstrates much more superior performance than other joint multi-modal models.
arXiv Detail & Related papers (2024-10-14T17:57:18Z) - MotionAura: Generating High-Quality and Motion Consistent Videos using Discrete Diffusion [3.7270979204213446]
We present four key contributions to address the challenges of video processing.
First, we introduce the 3D Inverted Vector-Quantization Variencoenco Autocoder.
Second, we present MotionAura, a text-to-video generation framework.
Third, we propose a spectral transformer-based denoising network.
Fourth, we introduce a downstream task of Sketch Guided Videopainting.
arXiv Detail & Related papers (2024-10-10T07:07:56Z) - ViBiDSampler: Enhancing Video Interpolation Using Bidirectional Diffusion Sampler [53.98558445900626]
Current image-to-video diffusion models, while powerful in generating videos from a single frame, need adaptation for two-frame conditioned generation.
We introduce a novel, bidirectional sampling strategy to address these off-manifold issues without requiring extensive re-noising or fine-tuning.
Our method employs sequential sampling along both forward and backward paths, conditioned on the start and end frames, respectively, ensuring more coherent and on-manifold generation of intermediate frames.
arXiv Detail & Related papers (2024-10-08T03:01:54Z) - ZeroSmooth: Training-free Diffuser Adaptation for High Frame Rate Video Generation [81.90265212988844]
We propose a training-free video method for generative video models in a plug-and-play manner.
We transform a video model into a self-cascaded video diffusion model with the designed hidden state correction modules.
Our training-free method is even comparable to trained models supported by huge compute resources and large-scale datasets.
arXiv Detail & Related papers (2024-06-03T00:31:13Z) - Video Interpolation with Diffusion Models [54.06746595879689]
We present VIDIM, a generative model for video, which creates short videos given a start and end frame.
VIDIM uses cascaded diffusion models to first generate the target video at low resolution, and then generate the high-resolution video conditioned on the low-resolution generated video.
arXiv Detail & Related papers (2024-04-01T15:59:32Z) - Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large
Datasets [36.95521842177614]
We present Stable Video Diffusion - a latent video diffusion model for high-resolution, state-of-the-art text-to-video and image-to-video generation.
We identify and evaluate three different stages for successful training of video LDMs: text-to-image pretraining, video pretraining, and high-quality video finetuning.
arXiv Detail & Related papers (2023-11-25T22:28:38Z) - Matryoshka Diffusion Models [38.26966802461602]
Diffusion models are the de facto approach for generating high-quality images and videos.
We introduce Matryoshka Diffusion Models, an end-to-end framework for high-resolution image and video synthesis.
We demonstrate the effectiveness of our approach on various benchmarks, including class-conditioned image generation, high-resolution text-to-image, and text-to-video applications.
arXiv Detail & Related papers (2023-10-23T17:20:01Z) - VIDM: Video Implicit Diffusion Models [75.90225524502759]
Diffusion models have emerged as a powerful generative method for synthesizing high-quality and diverse set of images.
We propose a video generation method based on diffusion models, where the effects of motion are modeled in an implicit condition.
We improve the quality of the generated videos by proposing multiple strategies such as sampling space truncation, robustness penalty, and positional group normalization.
arXiv Detail & Related papers (2022-12-01T02:58:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.