Predicting Mortality and Functional Status Scores of Traumatic Brain Injury Patients using Supervised Machine Learning
- URL: http://arxiv.org/abs/2410.20300v1
- Date: Sun, 27 Oct 2024 00:44:45 GMT
- Title: Predicting Mortality and Functional Status Scores of Traumatic Brain Injury Patients using Supervised Machine Learning
- Authors: Lucas Steinmetz, Shivam Maheshwari, Garik Kazanjian, Abigail Loyson, Tyler Alexander, Venkat Margapuri, C. Nataraj,
- Abstract summary: Traumatic brain injury (TBI) presents a significant public health challenge, often resulting in mortality or lasting disability.
Predicting outcomes such as mortality and Functional Status Scale (FSS) scores can enhance treatment strategies and inform clinical decision-making.
This study applies supervised machine learning (ML) methods to predict mortality and FSS scores using a real-world dataset of 300 pediatric TBI patients.
- Score: 0.0
- License:
- Abstract: Traumatic brain injury (TBI) presents a significant public health challenge, often resulting in mortality or lasting disability. Predicting outcomes such as mortality and Functional Status Scale (FSS) scores can enhance treatment strategies and inform clinical decision-making. This study applies supervised machine learning (ML) methods to predict mortality and FSS scores using a real-world dataset of 300 pediatric TBI patients from the University of Colorado School of Medicine. The dataset captures clinical features, including demographics, injury mechanisms, and hospitalization outcomes. Eighteen ML models were evaluated for mortality prediction, and thirteen models were assessed for FSS score prediction. Performance was measured using accuracy, ROC AUC, F1-score, and mean squared error. Logistic regression and Extra Trees models achieved high precision in mortality prediction, while linear regression demonstrated the best FSS score prediction. Feature selection reduced 103 clinical variables to the most relevant, enhancing model efficiency and interpretability. This research highlights the role of ML models in identifying high-risk patients and supporting personalized interventions, demonstrating the potential of data-driven analytics to improve TBI care and integrate into clinical workflows.
Related papers
- Machine Learning Applications in Medical Prognostics: A Comprehensive Review [0.0]
Machine learning (ML) has revolutionized medical prognostics by integrating advanced algorithms with clinical data.
RF models demonstrate robust performance in handling high-dimensional data.
CNNs have shown exceptional accuracy in cancer detection.
LSTM networks excel in analyzing temporal data, providing accurate predictions of clinical deterioration.
arXiv Detail & Related papers (2024-08-05T09:41:34Z) - Data-Driven Machine Learning Approaches for Predicting In-Hospital Sepsis Mortality [0.0]
This research aims to develop an interpretable and accurate ML model to help clinical professionals predict in-hospital mortality.
We analyzed ICU patient records from the MIMIC-III database based on specific criteria and extracted relevant data.
The Random Forest model was the most effective in predicting sepsis-related in-hospital mortality.
arXiv Detail & Related papers (2024-08-03T00:28:25Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - Random Forest-Based Prediction of Stroke Outcome [7.090384254446659]
We generate a predictive model using machine learning techniques for prediction of mortality and morbidity 3 months after admission.
In conclusion, machine learning RF algorithms can be effectively used in stroke patients for long-term outcome prediction of mortality and morbidity.
arXiv Detail & Related papers (2024-02-01T14:54:17Z) - Automatic prediction of mortality in patients with mental illness using
electronic health records [0.5957022371135096]
This paper addresses the persistent challenge of predicting mortality in patients with mental diagnoses.
Data from patients with mental disease diagnoses were extracted from the well-known clinical MIMIC-III data set.
Four machine learning algorithms were used, with results indicating that Random Forest and Support Vector Machine models outperformed others.
arXiv Detail & Related papers (2023-10-18T17:21:01Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
An extremely boosted neural network (XBNet) is used to predict clinical deterioration (CD)
The XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
arXiv Detail & Related papers (2022-12-17T23:29:14Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - A Knowledge Distillation Ensemble Framework for Predicting Short and
Long-term Hospitalisation Outcomes from Electronic Health Records Data [5.844828229178025]
Existing outcome prediction models suffer from a low recall of infrequent positive outcomes.
We present a highly-scalable and robust machine learning framework to automatically predict adversity represented by mortality and ICU admission.
arXiv Detail & Related papers (2020-11-18T15:56:28Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.