Aligned Query Expansion: Efficient Query Expansion for Information Retrieval through LLM Alignment
- URL: http://arxiv.org/abs/2507.11042v1
- Date: Tue, 15 Jul 2025 07:11:29 GMT
- Title: Aligned Query Expansion: Efficient Query Expansion for Information Retrieval through LLM Alignment
- Authors: Adam Yang, Gustavo Penha, Enrico Palumbo, Hugues Bouchard,
- Abstract summary: Aligned Query Expansion (AQE) is a novel approach to enhance query expansion for passage retrieval in open-domain question answering.<n>We show that AQE outperforms baseline models for query expansion in both in-domain and out-of-domain settings.
- Score: 4.21943400140261
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With the breakthroughs in large language models (LLMs), query generation techniques that expand documents and queries with related terms are becoming increasingly popular in the information retrieval field. Such techniques have been shown to improve the effectiveness of traditional lexical retrieval methods by dealing with the vocabulary mismatch problem. Recent work has found that generating queries with a greedy decoding strategy can produce sub-optimal queries, including hallucinations, and proposed to filter out queries before expansion. This `generate-then-filter' approach is costly, as it requires generating multiple queries and applying a relevance model to all of them and does not teach the LLM which of the generated queries is more effective for expansion. To overcome such limitations, we propose Aligned Query Expansion (AQE), a novel approach to enhance query expansion for passage retrieval in open-domain question answering. AQE leverages recent techniques in LLM alignment to fine-tune models for generating query expansions that directly optimize the effectiveness of the retrieval task, eliminating the need for additional filtering steps. This alignment ensures that queries are more relevant, reducing computational costs while improving retrieval effectiveness. Empirical evaluations show that AQE outperforms baseline models for query expansion in both in-domain and out-of-domain settings, demonstrating significant improvements in retrieval effectiveness.
Related papers
- Exp4Fuse: A Rank Fusion Framework for Enhanced Sparse Retrieval using Large Language Model-based Query Expansion [0.0]
Large Language Models (LLMs) have shown potential in generating hypothetical documents for query expansion.<n>We introduce a novel fusion ranking framework, Exp4Fuse, which enhances the performance of sparse retrievers.
arXiv Detail & Related papers (2025-06-05T08:44:34Z) - Iterative Self-Incentivization Empowers Large Language Models as Agentic Searchers [74.17516978246152]
Large language models (LLMs) have been widely integrated into information retrieval to advance traditional techniques.<n>We propose EXSEARCH, an agentic search framework, where the LLM learns to retrieve useful information as the reasoning unfolds.<n>Experiments on four knowledge-intensive benchmarks show that EXSEARCH substantially outperforms baselines.
arXiv Detail & Related papers (2025-05-26T15:27:55Z) - Effective Instruction Parsing Plugin for Complex Logical Query Answering on Knowledge Graphs [51.33342412699939]
Knowledge Graph Query Embedding (KGQE) aims to embed First-Order Logic (FOL) queries in a low-dimensional KG space for complex reasoning over incomplete KGs.
Recent studies integrate various external information (such as entity types and relation context) to better capture the logical semantics of FOL queries.
We propose an effective Query Instruction Parsing (QIPP) that captures latent query patterns from code-like query instructions.
arXiv Detail & Related papers (2024-10-27T03:18:52Z) - GenCRF: Generative Clustering and Reformulation Framework for Enhanced Intent-Driven Information Retrieval [20.807374287510623]
We propose GenCRF: a Generative Clustering and Reformulation Framework to capture diverse intentions adaptively.
We show that GenCRF achieves state-of-the-art performance, surpassing previous query reformulation SOTAs by up to 12% on nDCG@10.
arXiv Detail & Related papers (2024-09-17T05:59:32Z) - Optimization of Retrieval-Augmented Generation Context with Outlier Detection [0.0]
We focus on methods to reduce the size and improve the quality of the prompt context required for question-answering systems.
Our goal is to select the most semantically relevant documents, treating the discarded ones as outliers.
It was found that the greatest improvements were achieved with increasing complexity of the questions and answers.
arXiv Detail & Related papers (2024-07-01T15:53:29Z) - Database-Augmented Query Representation for Information Retrieval [59.57065228857247]
We present a novel retrieval framework called Database-Augmented Query representation (DAQu)
DAQu augments the original query with various (query-related) metadata across multiple tables.
We validate DAQu in diverse retrieval scenarios that can incorporate metadata from the relational database.
arXiv Detail & Related papers (2024-06-23T05:02:21Z) - Progressive Query Expansion for Retrieval Over Cost-constrained Data Sources [6.109188517569139]
ProQE is a progressive query expansion algorithm that iteratively expands the query as it retrieves more documents.
Our results show that ProQE outperforms state-of-the-art baselines by 37% and is the most cost-effective.
arXiv Detail & Related papers (2024-06-11T10:30:19Z) - Improving Retrieval for RAG based Question Answering Models on Financial Documents [0.046603287532620746]
This paper explores the existing constraints of RAG pipelines and introduces methodologies for enhancing text retrieval.
It delves into strategies such as sophisticated chunking techniques, query expansion, the incorporation of metadata annotations, the application of re-ranking algorithms, and the fine-tuning of embedding algorithms.
arXiv Detail & Related papers (2024-03-23T00:49:40Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) have emerged as a promising approach to enhancing response accuracy in several tasks, such as Question-Answering (QA)
We propose a novel adaptive QA framework, that can dynamically select the most suitable strategy for (retrieval-augmented) LLMs based on the query complexity.
We validate our model on a set of open-domain QA datasets, covering multiple query complexities, and show that ours enhances the overall efficiency and accuracy of QA systems.
arXiv Detail & Related papers (2024-03-21T13:52:30Z) - Allies: Prompting Large Language Model with Beam Search [107.38790111856761]
In this work, we propose a novel method called ALLIES.
Given an input query, ALLIES leverages LLMs to iteratively generate new queries related to the original query.
By iteratively refining and expanding the scope of the original query, ALLIES captures and utilizes hidden knowledge that may not be directly through retrieval.
arXiv Detail & Related papers (2023-05-24T06:16:44Z) - Query2doc: Query Expansion with Large Language Models [69.9707552694766]
The proposed method first generates pseudo- documents by few-shot prompting large language models (LLMs)
query2doc boosts the performance of BM25 by 3% to 15% on ad-hoc IR datasets.
Our method also benefits state-of-the-art dense retrievers in terms of both in-domain and out-of-domain results.
arXiv Detail & Related papers (2023-03-14T07:27:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.