論文の概要: Rethinking Reconstruction-based Graph-Level Anomaly Detection: Limitations and a Simple Remedy
- arxiv url: http://arxiv.org/abs/2410.20366v1
- Date: Sun, 27 Oct 2024 07:41:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:20:48.034316
- Title: Rethinking Reconstruction-based Graph-Level Anomaly Detection: Limitations and a Simple Remedy
- Title(参考訳): 再構成に基づくグラフレベル異常検出の再考:限界と簡単な治療
- Authors: Sunwoo Kim, Soo Yong Lee, Fanchen Bu, Shinhwan Kang, Kyungho Kim, Jaemin Yoo, Kijung Shin,
- Abstract要約: Graph-AEsの注目すべき応用は、グラフレベル異常検出(GLAD)である。
再建フリップと呼ばれる非自明な反例を報告する。
MUSE という名前の新規でシンプルなGLAD法を提案する。
- 参考スコア(独自算出の注目度): 32.624939333311374
- License:
- Abstract: Graph autoencoders (Graph-AEs) learn representations of given graphs by aiming to accurately reconstruct them. A notable application of Graph-AEs is graph-level anomaly detection (GLAD), whose objective is to identify graphs with anomalous topological structures and/or node features compared to the majority of the graph population. Graph-AEs for GLAD regard a graph with a high mean reconstruction error (i.e. mean of errors from all node pairs and/or nodes) as anomalies. Namely, the methods rest on the assumption that they would better reconstruct graphs with similar characteristics to the majority. We, however, report non-trivial counter-examples, a phenomenon we call reconstruction flip, and highlight the limitations of the existing Graph-AE-based GLAD methods. Specifically, we empirically and theoretically investigate when this assumption holds and when it fails. Through our analyses, we further argue that, while the reconstruction errors for a given graph are effective features for GLAD, leveraging the multifaceted summaries of the reconstruction errors, beyond just mean, can further strengthen the features. Thus, we propose a novel and simple GLAD method, named MUSE. The key innovation of MUSE involves taking multifaceted summaries of reconstruction errors as graph features for GLAD. This surprisingly simple method obtains SOTA performance in GLAD, performing best overall among 14 methods across 10 datasets.
- Abstract(参考訳): グラフオートエンコーダ(Graph-AE)は、グラフを正確に再構築することを目的として、与えられたグラフの表現を学習する。
Graph-AEsの注目すべき応用は、グラフレベルの異常検出(GLAD)である。
GLAD用のグラフAEは、平均再構成エラー(すなわち、すべてのノードペアと/またはノードのエラーの平均)を異常として扱う。
すなわち、これらの手法は、多数派に類似した特徴を持つグラフを再構築する方がよいという仮定に基づいている。
しかし、我々はリコンストラクションフリップと呼ばれる非自明な反例を報告し、既存のGraph-AEベースのGLAD手法の限界を強調した。
具体的には、この仮定がいつ成立し、いつ失敗するかを経験的に理論的に調査する。
解析を通じて、与えられたグラフの再構成エラーがGLADの有効な特徴であるのに対し、再構築エラーの多面的要約を利用して、単に平均を超えて、さらに機能を強化することができると論じる。
そこで本研究では,MUSEという新しいシンプルなGLAD手法を提案する。
MUSEのキーとなるイノベーションは、GLADのグラフ機能として、再構成エラーの多面的な要約を取ることである。
この驚くほど単純な方法は、GLADでSOTAのパフォーマンスを取得し、10つのデータセットで14のメソッドで最高のパフォーマンスを発揮する。
関連論文リスト
- Preserving Node Distinctness in Graph Autoencoders via Similarity Distillation [9.395697548237333]
グラフオートエンコーダ(GAE)は、平均二乗誤差(MSE)のような距離ベースの基準に依存して入力グラフを再構築する。
単一の再構築基準にのみ依存すると 再建されたグラフの 特徴が失われる可能性がある
我々は,再構成されたグラフにおいて,必要な相違性を維持するための簡易かつ効果的な戦略を開発した。
論文 参考訳(メタデータ) (2024-06-25T12:54:35Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
本稿では,属性付きグラフデータに対する新しいDeep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE)を提案する。
提案手法は,最先端のベースラインアルゴリズムを,一般的なデータセット間でのダウンストリームタスクの差を大きく越える。
論文 参考訳(メタデータ) (2024-01-12T17:57:07Z) - ADA-GAD: Anomaly-Denoised Autoencoders for Graph Anomaly Detection [84.0718034981805]
我々はAnomaly-Denoized Autoencoders for Graph Anomaly Detection (ADA-GAD)という新しいフレームワークを導入する。
第1段階では,異常レベルを低減したグラフを生成する学習自由な異常化拡張法を設計する。
次の段階では、デコーダは元のグラフで検出するために再訓練される。
論文 参考訳(メタデータ) (2023-12-22T09:02:01Z) - Towards Self-Interpretable Graph-Level Anomaly Detection [73.1152604947837]
グラフレベルの異常検出(GLAD)は、コレクションの大多数と比べて顕著な相違を示すグラフを識別することを目的としている。
本稿では,異常なグラフを検出し,同時に情報的説明を生成する自己解釈グラフaNomaly dETectionモデル(SIGNET)を提案する。
論文 参考訳(メタデータ) (2023-10-25T10:10:07Z) - Gradient scarcity with Bilevel Optimization for Graph Learning [0.0]
勾配不足は、ノードのサブセットの損失を最小限にすることでグラフを学習する際に発生する。
我々は、この現象の正確な数学的特徴を与え、双レベル最適化にも現れることを証明した。
この問題を緩和するために,グラフ・ツー・グラフモデル(G2G)を用いた潜時グラフ学習,グラフに先行構造を課すグラフ正規化,あるいは直径を縮小した元のグラフよりも大きなグラフを最適化することを提案する。
論文 参考訳(メタデータ) (2023-03-24T12:37:43Z) - Graph Signal Sampling for Inductive One-Bit Matrix Completion: a
Closed-form Solution [112.3443939502313]
グラフ信号解析と処理の利点を享受する統合グラフ信号サンプリングフレームワークを提案する。
キーとなる考え方は、各ユーザのアイテムのレーティングをアイテムイットグラフの頂点上の関数(信号)に変換することである。
オンライン設定では、グラフフーリエ領域における連続ランダムガウス雑音を考慮したベイズ拡張(BGS-IMC)を開発する。
論文 参考訳(メタデータ) (2023-02-08T08:17:43Z) - Graph Generation with Diffusion Mixture [57.78958552860948]
グラフの生成は、非ユークリッド構造の複雑な性質を理解する必要がある実世界のタスクにとって大きな課題である。
本稿では,拡散過程の最終グラフ構造を明示的に学習することにより,グラフのトポロジーをモデル化する生成フレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-07T17:07:46Z) - Deep Graph-level Anomaly Detection by Glocal Knowledge Distillation [61.39364567221311]
グラフレベルの異常検出(GAD)は、その構造やノードの特徴に異常なグラフを検出する問題を記述している。
GADの課題の1つは、局所的および大域的非正則グラフの検出を可能にするグラフ表現を考案することである。
本稿では,グラフとノード表現の連成ランダム蒸留により,グローバルおよびローカルな正規パターン情報を豊富に学習するGADのための新しい深部異常検出手法を提案する。
論文 参考訳(メタデータ) (2021-12-19T05:04:53Z) - Graph Denoising with Framelet Regularizer [25.542429117462547]
本稿では,特徴雑音と構造雑音の両面からグラフデータの正則化を行う。
本モデルでは, グラフが汚染されている場合でも, 一般的なグラフ畳み込みと比較して, 性能が著しく向上する。
論文 参考訳(メタデータ) (2021-11-05T05:17:23Z) - Generating the Graph Gestalt: Kernel-Regularized Graph Representation
Learning [47.506013386710954]
グラフデータの完全な科学的理解は、グローバル構造とローカル構造の両方に対処する必要がある。
本稿では,グラフVAEフレームワークにおける相補的目的として,両者のジョイントモデルを提案する。
実験により,生成したグラフ構造の現実性は,典型的には1-2桁のグラフ構造メトリクスによって著しく向上したことが示された。
論文 参考訳(メタデータ) (2021-06-29T10:48:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。