Addressing the Pitfalls of Image-Based Structural Health Monitoring: A Focus on False Positives, False Negatives, and Base Rate Bias
- URL: http://arxiv.org/abs/2410.20384v1
- Date: Sun, 27 Oct 2024 09:15:05 GMT
- Title: Addressing the Pitfalls of Image-Based Structural Health Monitoring: A Focus on False Positives, False Negatives, and Base Rate Bias
- Authors: Vagelis Plevris,
- Abstract summary: This study explores the limitations of image-based structural health monitoring (SHM) techniques in detecting structural damage.
The reliability of image-based SHM is impacted by challenges such as false positives, false negatives, and environmental variability.
Strategies for mitigating these limitations are discussed, including hybrid systems that combine multiple data sources.
- Score: 0.0
- License:
- Abstract: This study explores the limitations of image-based structural health monitoring (SHM) techniques in detecting structural damage. Leveraging machine learning and computer vision, image-based SHM offers a scalable and efficient alternative to manual inspections. However, its reliability is impacted by challenges such as false positives, false negatives, and environmental variability, particularly in low base rate damage scenarios. The Base Rate Bias plays a significant role, as low probabilities of actual damage often lead to misinterpretation of positive results. This study uses both Bayesian analysis and a frequentist approach to evaluate the precision of damage detection systems, revealing that even highly accurate models can yield misleading results when the occurrence of damage is rare. Strategies for mitigating these limitations are discussed, including hybrid systems that combine multiple data sources, human-in-the-loop approaches for critical assessments, and improving the quality of training data. These findings provide essential insights into the practical applicability of image-based SHM techniques, highlighting both their potential and their limitations for real-world infrastructure monitoring.
Related papers
- Trustworthy image-to-image translation: evaluating uncertainty calibration in unpaired training scenarios [0.0]
Mammographic screening is an effective method for detecting breast cancer, facilitating early diagnosis.
Deep neural networks have been shown effective in some studies, but their tendency to overfit leaves considerable risk for poor generalisation and misdiagnosis.
Data augmentation schemes based on unpaired neural style transfer models have been proposed that improve generalisability.
We evaluate their performance when trained on image patches parsed from three open access mammography datasets and one non-medical image dataset.
arXiv Detail & Related papers (2025-01-29T11:09:50Z) - Vision-based autonomous structural damage detection using data-driven methods [0.0]
This study addresses the need for efficient and accurate damage detection in wind turbine structures.
Traditional inspection methods, such as manual assessments and non-destructive testing (NDT), are often costly, time-consuming, and prone to human error.
To tackle these challenges, this research investigates advanced deep learning algorithms for vision-based structural health monitoring.
arXiv Detail & Related papers (2025-01-28T02:52:04Z) - A Multimodal Fusion Framework for Bridge Defect Detection with Cross-Verification [0.0]
This paper introduces a multimodal fusion framework for the detection and analysis of bridge defects.
It integrates Non-Destructive Evaluation (NDE) techniques with advanced image processing to enable precise structural assessment.
arXiv Detail & Related papers (2024-12-23T20:33:34Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
We present a comprehensive analysis of the characterization of adversarial inputs, through the lens of formal verification.
We introduce a novel metric, the Adversarial Rate, to classify models based on their susceptibility to such perturbations.
Our analysis empirically demonstrates how adversarial inputs can affect the safety of a given DRL system with respect to such perturbations.
arXiv Detail & Related papers (2024-02-07T21:58:40Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
Investigation focuses on the models' ability to handle a range of perturbations, such as sensor faults and noise.
We test the generalization and transfer learning capabilities of these models by exposing them to out-of-distribution (OOD) samples.
arXiv Detail & Related papers (2023-06-13T12:43:59Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - Multi-view deep learning for reliable post-disaster damage
classification [0.0]
This study aims to enable more reliable automated post-disaster building damage classification using artificial intelligence (AI) and multi-view imagery.
The proposed model is trained and validated on reconnaissance visual dataset containing expert-labeled, geotagged images of the inspected buildings following hurricane Harvey.
arXiv Detail & Related papers (2022-08-06T01:04:13Z) - Interpretability in Convolutional Neural Networks for Building Damage
Classification in Satellite Imagery [0.0]
We use a dataset that includes labeled pre- and post-disaster satellite imagery to assess building damage on a per-building basis.
We train multiple convolutional neural networks (CNNs) to assess building damage on a per-building basis.
Our research seeks to computationally contribute to aiding in this ongoing and growing humanitarian crisis, heightened by anthropogenic climate change.
arXiv Detail & Related papers (2022-01-24T16:55:56Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
A major challenge that limits the wide-spread adoption of deep learning has been their fragility to adversarial attacks.
This study presents the concept of residual error, a new performance measure for assessing the adversarial robustness of a deep neural network.
Experimental results using the case of image classification demonstrate the effectiveness and efficacy of the proposed residual error metric.
arXiv Detail & Related papers (2021-06-18T16:34:23Z) - Assessing out-of-domain generalization for robust building damage
detection [78.6363825307044]
Building damage detection can be automated by applying computer vision techniques to satellite imagery.
Models must be robust to a shift in distribution between disaster imagery available for training and the images of the new event.
We argue that future work should focus on the OOD regime instead.
arXiv Detail & Related papers (2020-11-20T10:30:43Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.