A Multimodal Fusion Framework for Bridge Defect Detection with Cross-Verification
- URL: http://arxiv.org/abs/2412.17968v1
- Date: Mon, 23 Dec 2024 20:33:34 GMT
- Title: A Multimodal Fusion Framework for Bridge Defect Detection with Cross-Verification
- Authors: Ravi Datta Rachuri, Duoduo Liao, Samhita Sarikonda, Datha Vaishnavi Kondur,
- Abstract summary: This paper introduces a multimodal fusion framework for the detection and analysis of bridge defects.
It integrates Non-Destructive Evaluation (NDE) techniques with advanced image processing to enable precise structural assessment.
- Score: 0.0
- License:
- Abstract: This paper presents a pilot study introducing a multimodal fusion framework for the detection and analysis of bridge defects, integrating Non-Destructive Evaluation (NDE) techniques with advanced image processing to enable precise structural assessment. By combining data from Impact Echo (IE) and Ultrasonic Surface Waves (USW) methods, this preliminary investigation focuses on identifying defect-prone regions within concrete structures, emphasizing critical indicators such as delamination and debonding. Using geospatial analysis with alpha shapes, fusion of defect points, and unified lane boundaries, the proposed framework consolidates disparate data sources to enhance defect localization and facilitate the identification of overlapping defect regions. Cross-verification with adaptive image processing further validates detected defects by aligning their coordinates with visual data, utilizing advanced contour-based mapping and bounding box techniques for precise defect identification. The experimental results, with an F1 score of 0.83, demonstrate the potential efficacy of the approach in improving defect localization, reducing false positives, and enhancing detection accuracy, which provides a foundation for future research and larger-scale validation. This preliminary exploration establishes the framework as a promising tool for efficient bridge health assessment, with implications for proactive structural monitoring and maintenance.
Related papers
- Adaptive Signal Analysis for Automated Subsurface Defect Detection Using Impact Echo in Concrete Slabs [0.0]
This pilot study presents a novel, automated, and scalable methodology for detecting subsurface defect-prone regions in concrete slabs.
The approach integrates advanced signal processing, clustering, and visual analytics to identify subsurface anomalies.
The results demonstrate the robustness of the methodology, consistently identifying defect-prone areas with minimal false positives and few missed defects.
arXiv Detail & Related papers (2024-12-23T20:05:53Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Segment Anything in Defect Detection [38.85728242930962]
DefectSAM is a novel approach for segmenting defects on highly noisy thermal images.
It surpasses existing state-of-the-art segmentation algorithms and achieves significant improvements in defect detection rates.
arXiv Detail & Related papers (2023-11-17T00:28:19Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
We propose a Deep Information Decomposition (DID) framework to enhance the performance of Cross-dataset Deepfake Detection (CrossDF)
Unlike most existing deepfake detection methods, our framework prioritizes high-level semantic features over specific visual artifacts.
It adaptively decomposes facial features into deepfake-related and irrelevant information, only using the intrinsic deepfake-related information for real/fake discrimination.
arXiv Detail & Related papers (2023-09-30T12:30:25Z) - Constructive Incremental Learning for Fault Diagnosis of Rolling
Bearings with Ensemble Domain Adaptation [6.7898797318208075]
rolling bearing fault diagnosis is a practical issue across various working conditions.
The complexity of the external environment and the structure of rolling bearings often manifests faults characterized by randomness and fuzziness.
This paper presents a novel approach termed constructive Incremental learning-based ensemble domain adaptation (CIL-EDA) approach.
arXiv Detail & Related papers (2023-08-29T02:23:58Z) - PAIF: Perception-Aware Infrared-Visible Image Fusion for Attack-Tolerant
Semantic Segmentation [50.556961575275345]
We propose a perception-aware fusion framework to promote segmentation robustness in adversarial scenes.
We show that our scheme substantially enhances the robustness, with gains of 15.3% mIOU, compared with advanced competitors.
arXiv Detail & Related papers (2023-08-08T01:55:44Z) - Self-Supervised Graph Transformer for Deepfake Detection [1.8133635752982105]
Deepfake detection methods have shown promising results in recognizing forgeries within a given dataset.
Deepfake detection system must remain impartial to forgery types, appearance, and quality for guaranteed generalizable detection performance.
This study introduces a deepfake detection framework, leveraging a self-supervised pre-training model that delivers exceptional generalization ability.
arXiv Detail & Related papers (2023-07-27T17:22:41Z) - Target-aware Dual Adversarial Learning and a Multi-scenario
Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection [65.30079184700755]
This study addresses the issue of fusing infrared and visible images that appear differently for object detection.
Previous approaches discover commons underlying the two modalities and fuse upon the common space either by iterative optimization or deep networks.
This paper proposes a bilevel optimization formulation for the joint problem of fusion and detection, and then unrolls to a target-aware Dual Adversarial Learning (TarDAL) network for fusion and a commonly used detection network.
arXiv Detail & Related papers (2022-03-30T11:44:56Z) - Self-Supervised Predictive Convolutional Attentive Block for Anomaly
Detection [97.93062818228015]
We propose to integrate the reconstruction-based functionality into a novel self-supervised predictive architectural building block.
Our block is equipped with a loss that minimizes the reconstruction error with respect to the masked area in the receptive field.
We demonstrate the generality of our block by integrating it into several state-of-the-art frameworks for anomaly detection on image and video.
arXiv Detail & Related papers (2021-11-17T13:30:31Z) - Reference-based Defect Detection Network [57.89399576743665]
The first issue is the texture shift which means a trained defect detector model will be easily affected by unseen texture.
The second issue is partial visual confusion which indicates that a partial defect box is visually similar with a complete box.
We propose a Reference-based Defect Detection Network (RDDN) to tackle these two problems.
arXiv Detail & Related papers (2021-08-10T05:44:23Z) - Defect segmentation: Mapping tunnel lining internal defects with ground
penetrating radar data using a convolutional neural network [13.469645178974638]
This research proposes a Ground Penetrating Radar (GPR) data processing method for non-destructive detection of tunnel lining internal defects.
The method uses a CNN called Segnet combined with the Lov'asz softmax loss function to map the internal defect structure with GPR synthetic data.
arXiv Detail & Related papers (2020-03-29T19:30:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.