Multi-view deep learning for reliable post-disaster damage
classification
- URL: http://arxiv.org/abs/2208.03419v1
- Date: Sat, 6 Aug 2022 01:04:13 GMT
- Title: Multi-view deep learning for reliable post-disaster damage
classification
- Authors: Asim Bashir Khajwal, Chih-Shen Cheng, Arash Noshadravan
- Abstract summary: This study aims to enable more reliable automated post-disaster building damage classification using artificial intelligence (AI) and multi-view imagery.
The proposed model is trained and validated on reconnaissance visual dataset containing expert-labeled, geotagged images of the inspected buildings following hurricane Harvey.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This study aims to enable more reliable automated post-disaster building
damage classification using artificial intelligence (AI) and multi-view
imagery. The current practices and research efforts in adopting AI for
post-disaster damage assessment are generally (a) qualitative, lacking refined
classification of building damage levels based on standard damage scales, and
(b) trained based on aerial or satellite imagery with limited views, which,
although indicative, are not completely descriptive of the damage scale. To
enable more accurate and reliable automated quantification of damage levels,
the present study proposes the use of more comprehensive visual data in the
form of multiple ground and aerial views of the buildings. To have such a
spatially-aware damage prediction model, a Multi-view Convolution Neural
Network (MV-CNN) architecture is used that combines the information from
different views of a damaged building. This spatial 3D context damage
information will result in more accurate identification of damages and reliable
quantification of damage levels. The proposed model is trained and validated on
reconnaissance visual dataset containing expert-labeled, geotagged images of
the inspected buildings following hurricane Harvey. The developed model
demonstrates reasonably good accuracy in predicting the damage levels and can
be used to support more informed and reliable AI-assisted disaster management
practices.
Related papers
- DeepDamageNet: A two-step deep-learning model for multi-disaster building damage segmentation and classification using satellite imagery [12.869300064524122]
We present a solution that performs the two most important tasks in building damage assessment, segmentation and classification, through deep-learning models.
Our best model couples a building identification semantic segmentation convolutional neural network (CNN) to a building damage classification CNN, with a combined F1 score of 0.66.
We find that though our model was able to identify buildings with relatively high accuracy, building damage classification across various disaster types is a difficult task.
arXiv Detail & Related papers (2024-05-08T04:21:03Z) - Post-hurricane building damage assessment using street-view imagery and structured data: A multi-modal deep learning approach [1.748885212343545]
We propose a novel multi-modal approach for post-hurricane building damage classification, named the Multi-Modal Swin Transformer (MMST)
We empirically train and evaluate the proposed MMST using data collected from the 2022 Hurricane Ian in Florida, USA.
Results show that MMST outperforms all selected state-of-the-art benchmark models and can achieve an accuracy of 92.67%.
arXiv Detail & Related papers (2024-04-11T00:23:28Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuard is the first framework for fault type and zone classification resilient to adversarial attacks.
We propose a low-complexity fault prediction model and an online adversarial training technique to enhance robustness.
Our model outclasses the state-of-the-art for resilient fault prediction benchmarking, with an accuracy of up to 0.958.
arXiv Detail & Related papers (2024-03-26T08:51:23Z) - One-class Damage Detector Using Deeper Fully-Convolutional Data
Descriptions for Civil Application [0.0]
One-class damage detection approach has an advantage in that normal images can be used to optimize model parameters.
We propose a civil-purpose application for automating one-class damage detection reproducing a fully convolutional data description (FCDD) as a baseline model.
arXiv Detail & Related papers (2023-03-03T06:27:15Z) - Classification of structural building damage grades from multi-temporal
photogrammetric point clouds using a machine learning model trained on
virtual laser scanning data [58.720142291102135]
We present a novel approach to automatically assess multi-class building damage from real-world point clouds.
We use a machine learning model trained on virtual laser scanning (VLS) data.
The model yields high multi-target classification accuracies (overall accuracy: 92.0% - 95.1%)
arXiv Detail & Related papers (2023-02-24T12:04:46Z) - Interpretability in Convolutional Neural Networks for Building Damage
Classification in Satellite Imagery [0.0]
We use a dataset that includes labeled pre- and post-disaster satellite imagery to assess building damage on a per-building basis.
We train multiple convolutional neural networks (CNNs) to assess building damage on a per-building basis.
Our research seeks to computationally contribute to aiding in this ongoing and growing humanitarian crisis, heightened by anthropogenic climate change.
arXiv Detail & Related papers (2022-01-24T16:55:56Z) - Assessing out-of-domain generalization for robust building damage
detection [78.6363825307044]
Building damage detection can be automated by applying computer vision techniques to satellite imagery.
Models must be robust to a shift in distribution between disaster imagery available for training and the images of the new event.
We argue that future work should focus on the OOD regime instead.
arXiv Detail & Related papers (2020-11-20T10:30:43Z) - Understanding and Diagnosing Vulnerability under Adversarial Attacks [62.661498155101654]
Deep Neural Networks (DNNs) are known to be vulnerable to adversarial attacks.
We propose a novel interpretability method, InterpretGAN, to generate explanations for features used for classification in latent variables.
We also design the first diagnostic method to quantify the vulnerability contributed by each layer.
arXiv Detail & Related papers (2020-07-17T01:56:28Z) - MSNet: A Multilevel Instance Segmentation Network for Natural Disaster
Damage Assessment in Aerial Videos [74.22132693931145]
We study the problem of efficiently assessing building damage after natural disasters like hurricanes, floods or fires.
The first contribution is a new dataset, consisting of user-generated aerial videos from social media with annotations of instance-level building damage masks.
The second contribution is a new model, namely MSNet, which contains novel region proposal network designs.
arXiv Detail & Related papers (2020-06-30T02:23:05Z) - RescueNet: Joint Building Segmentation and Damage Assessment from
Satellite Imagery [83.49145695899388]
RescueNet is a unified model that can simultaneously segment buildings and assess the damage levels to individual buildings and can be trained end-to-end.
RescueNet is tested on the large scale and diverse xBD dataset and achieves significantly better building segmentation and damage classification performance than previous methods.
arXiv Detail & Related papers (2020-04-15T19:52:09Z) - An Attention-Based System for Damage Assessment Using Satellite Imagery [18.43310705820528]
We present Siam-U-Net-Attn model - a multi-class deep learning model with an attention mechanism - to assess damage levels of buildings.
We evaluate the proposed method on xView2, a large-scale building damage assessment dataset, and demonstrate that the proposed approach achieves accurate damage scale classification and building segmentation results simultaneously.
arXiv Detail & Related papers (2020-04-14T16:37:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.