論文の概要: Lodge++: High-quality and Long Dance Generation with Vivid Choreography Patterns
- arxiv url: http://arxiv.org/abs/2410.20389v1
- Date: Sun, 27 Oct 2024 09:32:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:15:48.140599
- Title: Lodge++: High-quality and Long Dance Generation with Vivid Choreography Patterns
- Title(参考訳): Lodge++: 鮮やかなコレオグラフィーパターンによる高品質で長いダンス生成
- Authors: Ronghui Li, Hongwen Zhang, Yachao Zhang, Yuxiang Zhang, Youliang Zhang, Jie Guo, Yan Zhang, Xiu Li, Yebin Liu,
- Abstract要約: Lodge++は、高品質で、超長い、鮮やかなダンスを生成するためのコレオグラフィーフレームワークである。
計算効率の課題に対処するため、Lodge++では、粗いダンスから罰金までのダンスを生成するための2段階の戦略を採用している。
Lodge++は,様々なダンスジャンルに適した超長いダンスを高速に生成できることを示す広範な実験によって検証されている。
- 参考スコア(独自算出の注目度): 48.54956784928394
- License:
- Abstract: We propose Lodge++, a choreography framework to generate high-quality, ultra-long, and vivid dances given the music and desired genre. To handle the challenges in computational efficiency, the learning of complex and vivid global choreography patterns, and the physical quality of local dance movements, Lodge++ adopts a two-stage strategy to produce dances from coarse to fine. In the first stage, a global choreography network is designed to generate coarse-grained dance primitives that capture complex global choreography patterns. In the second stage, guided by these dance primitives, a primitive-based dance diffusion model is proposed to further generate high-quality, long-sequence dances in parallel, faithfully adhering to the complex choreography patterns. Additionally, to improve the physical plausibility, Lodge++ employs a penetration guidance module to resolve character self-penetration, a foot refinement module to optimize foot-ground contact, and a multi-genre discriminator to maintain genre consistency throughout the dance. Lodge++ is validated by extensive experiments, which show that our method can rapidly generate ultra-long dances suitable for various dance genres, ensuring well-organized global choreography patterns and high-quality local motion.
- Abstract(参考訳): Lodge++は、高品質で、超長い、鮮やかなダンスを生成するためのコレオグラフィーフレームワークである。
計算効率の課題、複雑で鮮明なグローバルコレオグラフィーパターンの学習、ローカルダンス運動の物理的品質に対処するため、Lodge++では、粗いダンスから細かいダンスを生成するための2段階の戦略を採用している。
最初の段階では、グローバル振付ネットワークは、複雑なグローバル振付パターンをキャプチャする粗い粒度のダンスプリミティブを生成するように設計されている。
第2段階では、これらのダンスプリミティブによって導かれるプリミティブベースのダンス拡散モデルが提案され、複雑な振付パターンに忠実に忠実に忠実に、高品質で長いシーケンスのダンスを並列に生成する。
さらに、物理的な妥当性を向上させるために、Lodge++は文字の自己侵入を解決するために浸透誘導モジュール、足場接触を最適化するフットリファインメントモジュール、ダンス全体を通してジャンルの整合性を維持するためのマルチジャンル判別器を使用している。
Lodge++は様々なダンスジャンルに適した超長調のダンスを高速に生成できることを示す広範な実験によって検証された。
関連論文リスト
- Duolando: Follower GPT with Off-Policy Reinforcement Learning for Dance Accompaniment [87.20240797625648]
舞踊伴奏と呼ばれる3次元舞踊生成の分野における新しい課題を紹介する。
これは、リードダンサーの動きと、基礎となる音楽リズムと同期した「フォロワー」と呼ばれるダンスパートナーからの応答的な動きを生成する必要がある。
本稿では,GPTに基づくDuolandoモデルを提案する。このモデルでは,音楽の協調情報,リーダの動作,従者の動きに基づいて,後続のトークン化動作を自動回帰予測する。
論文 参考訳(メタデータ) (2024-03-27T17:57:02Z) - Lodge: A Coarse to Fine Diffusion Network for Long Dance Generation Guided by the Characteristic Dance Primitives [50.37531720524434]
与えられた音楽に条件付けされた非常に長いダンスシーケンスを生成することができるネットワークであるLodgeを提案する。
提案手法は,グローバルな振付パターンと局所的な動きの質,表現性とのバランスを保ちながら,非常に長いダンスシーケンスを並列に生成することができる。
論文 参考訳(メタデータ) (2024-03-15T17:59:33Z) - Bidirectional Autoregressive Diffusion Model for Dance Generation [26.449135437337034]
本稿では,双方向自己回帰拡散モデル(BADM)を提案する。
生成したダンスが前方方向と後方方向の両方で調和することを強制するために、双方向エンコーダが構築される。
生成したダンス動作をよりスムーズにするため、局所運動強調のための局所情報デコーダを構築する。
論文 参考訳(メタデータ) (2024-02-06T19:42:18Z) - FineDance: A Fine-grained Choreography Dataset for 3D Full Body Dance
Generation [33.9261932800456]
ファインダンス(FineDance)は、ダンスのジャンルで最大の音楽とダンスのペアデータセットである。
従来手法に存在した単調・不自然な手の動きに対処するため,フルボディダンス生成ネットワークを提案する。
生成したダンスのジャンルマッチングと長期的安定性をさらに向上するため,Genre&Coherent aware Retrieval Moduleを提案する。
論文 参考訳(メタデータ) (2022-12-07T16:10:08Z) - Bailando: 3D Dance Generation by Actor-Critic GPT with Choreographic
Memory [92.81383016482813]
そこで我々は3Dキャラクターを1曲の楽曲に追従して踊るための新しい音楽間距離フレームワークBailandoを提案する。
本稿では,音楽に忠実な流麗なダンスにユニットを構成するアクタ批判型生成事前学習変換器(GPT)を紹介する。
提案するフレームワークは,定性的かつ定量的に最先端の性能を実現する。
論文 参考訳(メタデータ) (2022-03-24T13:06:43Z) - Music-to-Dance Generation with Optimal Transport [48.92483627635586]
本稿では,音楽から3Dダンス振付を生成するためのMDOT-Net(Music-to-Dance with Optimal Transport Network)を提案する。
生成したダンス分布とグロモフ=ワッサーシュタイン距離の信頼度を評価するための最適な移動距離を導入し、ダンス分布と入力音楽の対応性を測定する。
論文 参考訳(メタデータ) (2021-12-03T09:37:26Z) - Learning to Generate Diverse Dance Motions with Transformer [67.43270523386185]
ダンス・モーション・シンセサイザーのための完全なシステムを提案する。
大規模なダンスモーションデータセットはYouTubeビデオから作成される。
新たな2ストリームモーショントランス生成モデルでは、高い柔軟性で動作シーケンスを生成することができる。
論文 参考訳(メタデータ) (2020-08-18T22:29:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。