Hierarchical Multiple Kernel K-Means Algorithm Based on Sparse Connectivity
- URL: http://arxiv.org/abs/2410.20391v1
- Date: Sun, 27 Oct 2024 09:35:09 GMT
- Title: Hierarchical Multiple Kernel K-Means Algorithm Based on Sparse Connectivity
- Authors: Lei Wang, Liang Du, Peng Zhou,
- Abstract summary: This paper proposes a hierarchical multiple kernel K-Means (SCHMKKM) algorithm based on sparse connectivity.
It is shown that more discnative information fusion is beneficial for learning a better consistent partition matrix.
- Score: 6.524937526547959
- License:
- Abstract: Multiple kernel learning (MKL) aims to find an optimal, consistent kernel function. In the hierarchical multiple kernel clustering (HMKC) algorithm, sample features are extracted layer by layer from a high-dimensional space to maximize the retention of effective information. However, information interaction between layers is often ignored. In this model, only corresponding nodes in adjacent layers exchange information; other nodes remain isolated, and if full connectivity is adopted, the diversity of the final consistency matrix is reduced. Therefore, this paper proposes a hierarchical multiple kernel K-Means (SCHMKKM) algorithm based on sparse connectivity, which controls the assignment matrix to achieve sparse connections through a sparsity rate, thereby locally fusing the features obtained by distilling information between layers. Finally, we conduct cluster analysis on multiple datasets and compare it with the fully connected hierarchical multiple kernel K-Means (FCHMKKM) algorithm in experiments. It is shown that more discriminative information fusion is beneficial for learning a better consistent partition matrix, and the fusion strategy based on sparse connection outperforms the full connection strategy.
Related papers
- Multiple kernel concept factorization algorithm based on global fusion [9.931283387968856]
In unsupervised environment, to design or select proper kernel function for specific dataset, a new algorithm called Globalized Multiple Kernel(GMKCF)was proposed.
The proposed algorithm outperforms comparison algorithms in data clustering, such as Kernel K-Means(KKM), Spectral Clustering(SC), CF Kernel(KCF), Co-regularized multi-view spectral clustering(Coreg), and Robust Multiple KKM(RMKKM)
arXiv Detail & Related papers (2024-10-27T09:13:57Z) - Kernel Correlation-Dissimilarity for Multiple Kernel k-Means Clustering [21.685153346752124]
Current methods enhance information diversity and reduce redundancy by exploiting interdependencies among multiple kernels based on correlations or dissimilarities.
We introduce a novel method that systematically integrates both kernel correlation and dissimilarity.
By emphasizing the coherence between kernel correlation and dissimilarity, our method offers a more objective and transparent strategy for extracting non-linear information.
arXiv Detail & Related papers (2024-03-06T04:24:43Z) - Mixture of multilayer stochastic block models for multiview clustering [0.0]
We propose an original method for aggregating multiple clustering coming from different sources of information.
The identifiability of the model parameters is established and a variational Bayesian EM algorithm is proposed for the estimation of these parameters.
The method is utilized to analyze global food trading networks, leading to structures of interest.
arXiv Detail & Related papers (2024-01-09T17:15:47Z) - One-Step Late Fusion Multi-view Clustering with Compressed Subspace [29.02032034647922]
We propose an integrated framework named One-Step Late Fusion Multi-view Clustering with Compressed Subspace (OS-LFMVC-CS)
We use the consensus subspace to align the partition matrix while optimizing the partition fusion, and utilize the fused partition matrix to guide the learning of discrete labels.
arXiv Detail & Related papers (2024-01-03T06:18:30Z) - Efficient and Effective Deep Multi-view Subspace Clustering [9.6753782215283]
We propose a novel deep framework, termed Efficient and Effective deep Multi-View Subspace Clustering (E$2$MVSC)
Instead of a parameterized FC layer, we design a Relation-Metric Net that decouples network parameter scale from sample numbers for greater computational efficiency.
E$2$MVSC yields comparable results to existing methods and achieves state-of-the-art performance in various types of multi-view datasets.
arXiv Detail & Related papers (2023-10-15T03:08:25Z) - Rethinking k-means from manifold learning perspective [122.38667613245151]
We present a new clustering algorithm which directly detects clusters of data without mean estimation.
Specifically, we construct distance matrix between data points by Butterworth filter.
To well exploit the complementary information embedded in different views, we leverage the tensor Schatten p-norm regularization.
arXiv Detail & Related papers (2023-05-12T03:01:41Z) - Late Fusion Multi-view Clustering via Global and Local Alignment
Maximization [61.89218392703043]
Multi-view clustering (MVC) optimally integrates complementary information from different views to improve clustering performance.
Most of existing approaches directly fuse multiple pre-specified similarities to learn an optimal similarity matrix for clustering.
We propose late fusion MVC via alignment to address these issues.
arXiv Detail & Related papers (2022-08-02T01:49:31Z) - Local Sample-weighted Multiple Kernel Clustering with Consensus
Discriminative Graph [73.68184322526338]
Multiple kernel clustering (MKC) is committed to achieving optimal information fusion from a set of base kernels.
This paper proposes a novel local sample-weighted multiple kernel clustering model.
Experimental results demonstrate that our LSWMKC possesses better local manifold representation and outperforms existing kernel or graph-based clustering algo-rithms.
arXiv Detail & Related papers (2022-07-05T05:00:38Z) - DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep
Neural Networks [53.88811980967342]
This paper presents a Deep Clustering via Ensembles (DeepCluE) approach.
It bridges the gap between deep clustering and ensemble clustering by harnessing the power of multiple layers in deep neural networks.
Experimental results on six image datasets confirm the advantages of DeepCluE over the state-of-the-art deep clustering approaches.
arXiv Detail & Related papers (2022-06-01T09:51:38Z) - Clustering Ensemble Meets Low-rank Tensor Approximation [50.21581880045667]
This paper explores the problem of clustering ensemble, which aims to combine multiple base clusterings to produce better performance than that of the individual one.
We propose a novel low-rank tensor approximation-based method to solve the problem from a global perspective.
Experimental results over 7 benchmark data sets show that the proposed model achieves a breakthrough in clustering performance, compared with 12 state-of-the-art methods.
arXiv Detail & Related papers (2020-12-16T13:01:37Z) - SimpleMKKM: Simple Multiple Kernel K-means [49.500663154085586]
We propose a simple yet effective multiple kernel clustering algorithm, termed simple multiple kernel k-means (SimpleMKKM)
Our criterion is given by an intractable minimization-maximization problem in the kernel coefficient and clustering partition matrix.
We theoretically analyze the performance of SimpleMKKM in terms of its clustering generalization error.
arXiv Detail & Related papers (2020-05-11T10:06:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.