Efficient and Effective Deep Multi-view Subspace Clustering
- URL: http://arxiv.org/abs/2310.09718v2
- Date: Mon, 4 Dec 2023 01:15:56 GMT
- Title: Efficient and Effective Deep Multi-view Subspace Clustering
- Authors: Yuxiu Lin, Hui Liu, Ren Wang, Qiang Guo, and Caiming Zhang
- Abstract summary: We propose a novel deep framework, termed Efficient and Effective deep Multi-View Subspace Clustering (E$2$MVSC)
Instead of a parameterized FC layer, we design a Relation-Metric Net that decouples network parameter scale from sample numbers for greater computational efficiency.
E$2$MVSC yields comparable results to existing methods and achieves state-of-the-art performance in various types of multi-view datasets.
- Score: 9.6753782215283
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent multi-view subspace clustering achieves impressive results utilizing
deep networks, where the self-expressive correlation is typically modeled by a
fully connected (FC) layer. However, they still suffer from two limitations. i)
The parameter scale of the FC layer is quadratic to sample numbers, resulting
in high time and memory costs that significantly degrade their feasibility in
large-scale datasets. ii) It is under-explored to extract a unified
representation that simultaneously satisfies minimal sufficiency and
discriminability. To this end, we propose a novel deep framework, termed
Efficient and Effective deep Multi-View Subspace Clustering (E$^2$MVSC).
Instead of a parameterized FC layer, we design a Relation-Metric Net that
decouples network parameter scale from sample numbers for greater computational
efficiency. Most importantly, the proposed method devises a multi-type
auto-encoder to explicitly decouple consistent, complementary, and superfluous
information from every view, which is supervised by a soft clustering
assignment similarity constraint. Following information bottleneck theory and
the maximal coding rate reduction principle, a sufficient yet minimal unified
representation can be obtained, as well as pursuing intra-cluster aggregation
and inter-cluster separability within it. Extensive experiments show that
E$^2$MVSC yields comparable results to existing methods and achieves
state-of-the-art performance in various types of multi-view datasets.
Related papers
- Scalable Multi-view Clustering via Explicit Kernel Features Maps [20.610589722626074]
A growing awareness of multi-view learning is a consequence of the increasing prevalence of multiple views in real-world applications.
An efficient optimization strategy is proposed, leveraging kernel feature maps to reduce the computational burden while maintaining good clustering performance.
We conduct extensive experiments on real-world benchmark networks of various sizes in order to evaluate the performance of our algorithm against state-of-the-art multi-view subspace clustering methods and attributed-network multi-view approaches.
arXiv Detail & Related papers (2024-02-07T12:35:31Z) - One for all: A novel Dual-space Co-training baseline for Large-scale
Multi-View Clustering [42.92751228313385]
We propose a novel multi-view clustering model, named Dual-space Co-training Large-scale Multi-view Clustering (DSCMC)
The main objective of our approach is to enhance the clustering performance by leveraging co-training in two distinct spaces.
Our algorithm has an approximate linear computational complexity, which guarantees its successful application on large-scale datasets.
arXiv Detail & Related papers (2024-01-28T16:30:13Z) - Efficient Multi-View Graph Clustering with Local and Global Structure
Preservation [59.49018175496533]
We propose a novel anchor-based multi-view graph clustering framework termed Efficient Multi-View Graph Clustering with Local and Global Structure Preservation (EMVGC-LG)
Specifically, EMVGC-LG jointly optimize anchor construction and graph learning to enhance the clustering quality.
In addition, EMVGC-LG inherits the linear complexity of existing AMVGC methods respecting the sample number.
arXiv Detail & Related papers (2023-08-31T12:12:30Z) - Multi-View Clustering via Semi-non-negative Tensor Factorization [120.87318230985653]
We develop a novel multi-view clustering based on semi-non-negative tensor factorization (Semi-NTF)
Our model directly considers the between-view relationship and exploits the between-view complementary information.
In addition, we provide an optimization algorithm for the proposed method and prove mathematically that the algorithm always converges to the stationary KKT point.
arXiv Detail & Related papers (2023-03-29T14:54:19Z) - Subspace-Contrastive Multi-View Clustering [0.0]
We propose a novel Subspace-Contrastive Multi-View Clustering (SCMC) approach.
We employ view-specific auto-encoders to map the original multi-view data into compact features perceiving its nonlinear structures.
To demonstrate the effectiveness of the proposed model, we conduct a large number of comparative experiments on eight challenge datasets.
arXiv Detail & Related papers (2022-10-13T07:19:37Z) - Adaptively-weighted Integral Space for Fast Multiview Clustering [54.177846260063966]
We propose an Adaptively-weighted Integral Space for Fast Multiview Clustering (AIMC) with nearly linear complexity.
Specifically, view generation models are designed to reconstruct the view observations from the latent integral space.
Experiments conducted on several realworld datasets confirm the superiority of the proposed AIMC method.
arXiv Detail & Related papers (2022-08-25T05:47:39Z) - Late Fusion Multi-view Clustering via Global and Local Alignment
Maximization [61.89218392703043]
Multi-view clustering (MVC) optimally integrates complementary information from different views to improve clustering performance.
Most of existing approaches directly fuse multiple pre-specified similarities to learn an optimal similarity matrix for clustering.
We propose late fusion MVC via alignment to address these issues.
arXiv Detail & Related papers (2022-08-02T01:49:31Z) - DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep
Neural Networks [53.88811980967342]
This paper presents a Deep Clustering via Ensembles (DeepCluE) approach.
It bridges the gap between deep clustering and ensemble clustering by harnessing the power of multiple layers in deep neural networks.
Experimental results on six image datasets confirm the advantages of DeepCluE over the state-of-the-art deep clustering approaches.
arXiv Detail & Related papers (2022-06-01T09:51:38Z) - Contrastive Multi-view Hyperbolic Hierarchical Clustering [33.050054725595736]
We propose Contrastive Multi-view Hyperbolic Hierarchical Clustering (CMHHC)
It consists of three components, i.e., multi-view alignment learning, aligned feature similarity learning, and continuous hyperbolic hierarchical clustering.
Experimental results on five real-world datasets demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2022-05-05T12:56:55Z) - Smoothed Multi-View Subspace Clustering [14.77544837600836]
We propose a novel multi-view clustering method named smoothed multi-view subspace clustering (SMVSC)
It employs a novel technique, i.e., graph filtering, to obtain a smooth representation for each view.
Experiments on benchmark datasets validate the superiority of our approach.
arXiv Detail & Related papers (2021-06-18T02:24:19Z) - Dual-constrained Deep Semi-Supervised Coupled Factorization Network with
Enriched Prior [80.5637175255349]
We propose a new enriched prior based Dual-constrained Deep Semi-Supervised Coupled Factorization Network, called DS2CF-Net.
To ex-tract hidden deep features, DS2CF-Net is modeled as a deep-structure and geometrical structure-constrained neural network.
Our network can obtain state-of-the-art performance for representation learning and clustering.
arXiv Detail & Related papers (2020-09-08T13:10:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.