NT-VOT211: A Large-Scale Benchmark for Night-time Visual Object Tracking
- URL: http://arxiv.org/abs/2410.20421v1
- Date: Sun, 27 Oct 2024 12:19:48 GMT
- Title: NT-VOT211: A Large-Scale Benchmark for Night-time Visual Object Tracking
- Authors: Yu Liu, Arif Mahmood, Muhammad Haris Khan,
- Abstract summary: This paper presents NT-VOT211, a new benchmark for evaluating visual object tracking algorithms in the challenging night-time conditions.
NT-VOT211 consists of 211 diverse videos, offering 211,000 well-annotated frames with 8 attributes including camera motion, deformation, fast motion, motion blur, tiny target, distractors, occlusion and out-of-view.
It is the largest night-time tracking benchmark to-date that is specifically designed to address unique challenges such as adverse visibility, image blur, and distractors inherent to night-time tracking scenarios.
- Score: 21.897255266278275
- License:
- Abstract: Many current visual object tracking benchmarks such as OTB100, NfS, UAV123, LaSOT, and GOT-10K, predominantly contain day-time scenarios while the challenges posed by the night-time has been less investigated. It is primarily because of the lack of a large-scale, well-annotated night-time benchmark for rigorously evaluating tracking algorithms. To this end, this paper presents NT-VOT211, a new benchmark tailored for evaluating visual object tracking algorithms in the challenging night-time conditions. NT-VOT211 consists of 211 diverse videos, offering 211,000 well-annotated frames with 8 attributes including camera motion, deformation, fast motion, motion blur, tiny target, distractors, occlusion and out-of-view. To the best of our knowledge, it is the largest night-time tracking benchmark to-date that is specifically designed to address unique challenges such as adverse visibility, image blur, and distractors inherent to night-time tracking scenarios. Through a comprehensive analysis of results obtained from 42 diverse tracking algorithms on NT-VOT211, we uncover the strengths and limitations of these algorithms, highlighting opportunities for enhancements in visual object tracking, particularly in environments with suboptimal lighting. Besides, a leaderboard for revealing performance rankings, annotation tools, comprehensive meta-information and all the necessary code for reproducibility of results is made publicly available. We believe that our NT-VOT211 benchmark will not only be instrumental in facilitating field deployment of VOT algorithms, but will also help VOT enhancements and it will unlock new real-world tracking applications. Our dataset and other assets can be found at: {https://github.com/LiuYuML/NV-VOT211.
Related papers
- Camouflaged_Object_Tracking__A_Benchmark [13.001689702214573]
We introduce the Camouflaged Object Tracking dataset (COTD), a benchmark for evaluating camouflaged object tracking methods.
COTD comprises 200 sequences and approximately 80,000 frames, each annotated with detailed bounding boxes.
Our evaluation of 20 existing tracking algorithms reveals significant deficiencies in their performance with camouflaged objects.
We propose a novel tracking framework, HiPTrack-MLS, which demonstrates promising results in improving tracking performance for camouflaged objects.
arXiv Detail & Related papers (2024-08-25T15:56:33Z) - Low-Light Object Tracking: A Benchmark [9.798869093713067]
We introduce LLOT, a benchmark specifically designed for Low-Light Object Tracking.
LLOT comprises 269 challenging sequences with a total of over 132K frames, each carefully annotated with bounding boxes.
In response, we propose H-DCPT, a novel tracker that incorporates historical and darkness clue prompts to set a stronger baseline.
arXiv Detail & Related papers (2024-08-21T09:27:57Z) - Temporal Correlation Meets Embedding: Towards a 2nd Generation of JDE-based Real-Time Multi-Object Tracking [52.04679257903805]
Joint Detection and Embedding (JDE) trackers have demonstrated excellent performance in Multi-Object Tracking (MOT) tasks.
Our tracker, named TCBTrack, achieves state-of-the-art performance on multiple public benchmarks.
arXiv Detail & Related papers (2024-07-19T07:48:45Z) - Tracking Reflected Objects: A Benchmark [12.770787846444406]
We introduce TRO, a benchmark specifically for Tracking Reflected Objects.
TRO includes 200 sequences with around 70,000 frames, each carefully annotated with bounding boxes.
To provide a stronger baseline, we propose a new tracker, HiP-HaTrack, which uses hierarchical features to improve performance.
arXiv Detail & Related papers (2024-07-07T02:22:45Z) - Autoregressive Queries for Adaptive Tracking with Spatio-TemporalTransformers [55.46413719810273]
rich-temporal information is crucial to the complicated target appearance in visual tracking.
Our method improves the tracker's performance on six popular tracking benchmarks.
arXiv Detail & Related papers (2024-03-15T02:39:26Z) - Improving Underwater Visual Tracking With a Large Scale Dataset and
Image Enhancement [70.2429155741593]
This paper presents a new dataset and general tracker enhancement method for Underwater Visual Object Tracking (UVOT)
It poses distinct challenges; the underwater environment exhibits non-uniform lighting conditions, low visibility, lack of sharpness, low contrast, camouflage, and reflections from suspended particles.
We propose a novel underwater image enhancement algorithm designed specifically to boost tracking quality.
The method has resulted in a significant performance improvement, of up to 5.0% AUC, of state-of-the-art (SOTA) visual trackers.
arXiv Detail & Related papers (2023-08-30T07:41:26Z) - Tracker Meets Night: A Transformer Enhancer for UAV Tracking [20.74868878876137]
spatial-channel Transformer-based low-light enhancer is proposed and plugged prior to tracking approaches.
To achieve semantic-level low-light enhancement targeting the high-level task, novel spatial-channel attention module is proposed.
In the enhancement process, SCT denoises and illuminates nighttime images simultaneously.
arXiv Detail & Related papers (2023-03-20T09:18:52Z) - AVisT: A Benchmark for Visual Object Tracking in Adverse Visibility [125.77396380698639]
AVisT is a benchmark for visual tracking in diverse scenarios with adverse visibility.
AVisT comprises 120 challenging sequences with 80k annotated frames, spanning 18 diverse scenarios.
We benchmark 17 popular and recent trackers on AVisT with detailed analysis of their tracking performance across attributes.
arXiv Detail & Related papers (2022-08-14T17:49:37Z) - Visible-Thermal UAV Tracking: A Large-Scale Benchmark and New Baseline [80.13652104204691]
In this paper, we construct a large-scale benchmark with high diversity for visible-thermal UAV tracking (VTUAV)
We provide a coarse-to-fine attribute annotation, where frame-level attributes are provided to exploit the potential of challenge-specific trackers.
In addition, we design a new RGB-T baseline, named Hierarchical Multi-modal Fusion Tracker (HMFT), which fuses RGB-T data in various levels.
arXiv Detail & Related papers (2022-04-08T15:22:33Z) - MOT20: A benchmark for multi object tracking in crowded scenes [73.92443841487503]
We present our MOT20benchmark, consisting of 8 new sequences depicting very crowded challenging scenes.
The benchmark was presented first at the 4thBMTT MOT Challenge Workshop at the Computer Vision and Pattern Recognition Conference (CVPR)
arXiv Detail & Related papers (2020-03-19T20:08:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.