論文の概要: CoralSCOP-LAT: Labeling and Analyzing Tool for Coral Reef Images with Dense Mask
- arxiv url: http://arxiv.org/abs/2410.20436v1
- Date: Sun, 27 Oct 2024 13:26:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:22:39.999836
- Title: CoralSCOP-LAT: Labeling and Analyzing Tool for Coral Reef Images with Dense Mask
- Title(参考訳): CoralSCOP-LAT:Dense Maskを用いたサンゴ礁画像のラベリングと解析ツール
- Authors: Yuk-Kwan Wong, Ziqiang Zheng, Mingzhe Zhang, David Suggett, Sai-Kit Yeung,
- Abstract要約: 本研究では,サンゴ礁の自動・半自動ラベル付け・分析ツールであるCoralSCOP-LATを提案する。
提案されたCoralSCOP-LATは、分析効率、精度、柔軟性から、既存のツールをはるかに上回っている。
我々のサンゴ礁分析ツールであるCoralSCOP-LATは、大規模なサンゴ礁モニタリングを繰り返すのに役立ちます。
- 参考スコア(独自算出の注目度): 14.092526875441221
- License:
- Abstract: Images of coral reefs provide invaluable information, which is essentially critical for surveying and monitoring the coral reef ecosystems. Robust and precise identification of coral reef regions within surveying imagery is paramount for assessing coral coverage, spatial distribution, and other statistical analyses. However, existing coral reef analytical approaches mainly focus on sparse points sampled from the whole imagery, which are highly subject to the sampling density and cannot accurately express the coral ambulance. Meanwhile, the analysis is both time-consuming and labor-intensive, and it is also limited to coral biologists. In this work, we propose CoralSCOP-LAT, an automatic and semi-automatic coral reef labeling and analysis tool, specially designed to segment coral reef regions (dense pixel masks) in coral reef images, significantly promoting analysis proficiency and accuracy. CoralSCOP-LAT leverages the advanced coral reef foundation model to accurately delineate coral regions, supporting dense coral reef analysis and reducing the dependency on manual annotation. The proposed CoralSCOP-LAT surpasses the existing tools by a large margin from analysis efficiency, accuracy, and flexibility. We perform comprehensive evaluations from various perspectives and the comparison demonstrates that CoralSCOP-LAT not only accelerates the coral reef analysis but also improves accuracy in coral segmentation and analysis. Our CoralSCOP-LAT, as the first dense coral reef analysis tool in the market, facilitates repeated large-scale coral reef monitoring analysis, contributing to more informed conservation efforts and sustainable management of coral reef ecosystems. Our tool will be available at https://coralscop.hkustvgd.com/.
- Abstract(参考訳): サンゴ礁の画像は貴重な情報を提供しており、サンゴ礁の生態系を調査・監視するために本質的に重要である。
調査画像中のサンゴ礁領域のロバストかつ正確な同定は,サンゴの分布,空間分布,その他の統計解析において最重要である。
しかし,既存のサンゴ礁分析手法は主に画像全体から採取したスパース点に着目しており,サンゴ礁はサンプリング密度が高く,サンゴ礁の救急車を正確に表現することができない。
一方、この分析は時間がかかり、労働集約的であり、サンゴの生物学者にも限られている。
本研究では,サンゴ礁画像中のサンゴ礁領域(高解像度の画素マスク)を識別する自動・半自動サンゴ礁標識解析ツールであるCoralSCOP-LATを提案する。
CoralSCOP-LATは、高度なサンゴ礁基盤モデルを利用して、サンゴ礁を正確に記述し、密集したサンゴ礁の分析をサポートし、手動のアノテーションへの依存を減らす。
提案されたCoralSCOP-LATは、分析効率、精度、柔軟性から、既存のツールをはるかに上回っている。
様々な観点から総合的な評価を行い,CoralSCOP-LATはサンゴ礁解析を加速するだけでなく,サンゴのセグメンテーションと解析の精度も向上することを示した。
我々のサンゴ礁分析ツールであるCalalSCOP-LATは,サンゴ礁モニタリングの大規模化に寄与し,サンゴ礁生態系の保全と持続可能な管理に寄与している。
私たちのツールはhttps://coralscop.hkustvgd.com/で利用可能です。
関連論文リスト
- Combining Observational Data and Language for Species Range Estimation [63.65684199946094]
我々は,数百万の市民科学種の観察とウィキペディアのテキスト記述を組み合わせた新しいアプローチを提案する。
我々のフレームワークは、場所、種、テキスト記述を共通空間にマッピングし、テキスト記述からゼロショット範囲の推定を可能にする。
また,本手法は観測データと組み合わせることで,少ないデータでより正確な距離推定を行うことができる。
論文 参考訳(メタデータ) (2024-10-14T17:22:55Z) - Automatic Coral Detection with YOLO: A Deep Learning Approach for Efficient and Accurate Coral Reef Monitoring [0.0]
サンゴ礁は、人為的な影響や気候変動によって脅威にさらされている重要な生態系である。
本稿では,深層学習モデルを用いたサンゴ自動検出システムを提案する。
論文 参考訳(メタデータ) (2024-04-03T08:00:46Z) - Deep learning for multi-label classification of coral conditions in the
Indo-Pacific via underwater photogrammetry [24.00646413446011]
本研究はインド太平洋におけるサンゴの一般的な条件と関連するストレスを表わしたデータセットを作成する。
既存の分類アルゴリズムを評価し、サンゴの条件を自動的に検出し、生態情報を抽出する新しいマルチラベル手法を提案した。
提案手法はサンゴの条件を, 健康, 危害, 死, 汚物として正確に分類する。
論文 参考訳(メタデータ) (2024-03-09T14:42:16Z) - CoralVOS: Dataset and Benchmark for Coral Video Segmentation [12.434773034255455]
第1図で示すような大規模サンゴビデオセグメンテーションデータセット(textbfCoralVOS)を提案する。
我々はCoralVOSデータセットで、最新の6つの最先端ビデオオブジェクトセグメンテーション(VOS)アルゴリズムを含む実験を行いました。
その結果,セグメンテーション精度がさらに向上する可能性がまだ高いことがわかった。
論文 参考訳(メタデータ) (2023-10-03T10:45:37Z) - Scalable Semantic 3D Mapping of Coral Reefs with Deep Learning [4.8902950939676675]
本稿では,エゴモーション映像から水中環境をマッピングするための新しいパラダイムを提案する。
前例のない規模で高精度な3Dセマンティックマッピングを行い,作業コストを大幅に削減した。
本手法は,サンゴ礁のサンゴ礁モニタリングを飛躍的にスケールアップする。
論文 参考訳(メタデータ) (2023-09-22T11:35:10Z) - Pengembangan Model untuk Mendeteksi Kerusakan pada Terumbu Karang dengan
Klasifikasi Citra [3.254879465902239]
本研究はFlickr APIを用いてFlickrから収集した923枚の画像からなる特別なデータセットを利用する。
この研究で使用される方法は、機械学習モデル、特に畳み込みニューラルネットワーク(CNN)の使用を含む。
その結果,Stock-Scratch ResNetモデルは,精度と精度で事前学習モデルより優れていることがわかった。
論文 参考訳(メタデータ) (2023-08-08T15:30:08Z) - Towards Generating Large Synthetic Phytoplankton Datasets for Efficient
Monitoring of Harmful Algal Blooms [77.25251419910205]
有害な藻類(HAB)は養殖農場で重大な魚死を引き起こす。
現在、有害藻や他の植物プランクトンを列挙する標準的な方法は、顕微鏡でそれらを手動で観察し数えることである。
合成画像の生成にはGAN(Generative Adversarial Networks)を用いる。
論文 参考訳(メタデータ) (2022-08-03T20:15:55Z) - BronchusNet: Region and Structure Prior Embedded Representation Learning
for Bronchus Segmentation and Classification [53.53758990624962]
そこで我々は,BronchusNetという組込みフレームワークに先立って,正確な気管支分析を行うための領域と構造を提案する。
気管支分画のための適応型ハード領域対応UNetを提案する。
気管支枝の分類には,ハイブリッドな点-ボクセルグラフ学習モジュールを提案する。
論文 参考訳(メタデータ) (2022-05-14T02:32:33Z) - SEA: Bridging the Gap Between One- and Two-stage Detector Distillation
via SEmantic-aware Alignment [76.80165589520385]
細粒度情報を抽象化する性質から,SEA (SEmantic-Aware Alignment) 蒸留法を命名した。
1段検出器と2段検出器の両方において、挑戦的な物体検出タスクにおいて、最先端の新たな結果が得られる。
論文 参考訳(メタデータ) (2022-03-02T04:24:05Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - SALT: Sea lice Adaptive Lattice Tracking -- An Unsupervised Approach to
Generate an Improved Ocean Model [72.3183990520267]
シーライス分散と分布を効率的に推定するためのシーライス適応格子追跡手法を提案する。
具体的には、局所的な海洋特性に基づいて、オーシャンモデルの格子グラフにノードをマージすることで、適応的な空間メッシュを生成する。
提案手法は, 変動する気候下での海洋ライス寄生圧マップの予測モデルにより, 積極的養殖管理の促進を約束するものである。
論文 参考訳(メタデータ) (2021-06-24T17:29:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。