TEAFormers: TEnsor-Augmented Transformers for Multi-Dimensional Time Series Forecasting
- URL: http://arxiv.org/abs/2410.20439v1
- Date: Sun, 27 Oct 2024 13:32:12 GMT
- Title: TEAFormers: TEnsor-Augmented Transformers for Multi-Dimensional Time Series Forecasting
- Authors: Linghang Kong, Elynn Chen, Yuzhou Chen, Yuefeng Han,
- Abstract summary: Multi-dimensional time series data are increasingly prevalent in fields such as economics, finance, and climate science.
Traditional Transformer models, though adept with sequential data, do not effectively preserve these multi-dimensional structures.
We introduce the vectors-Augmented Transformer (TEAFormer), a novel method that incorporates tensor expansion and compression within the Transformer framework.
- Score: 14.43696537295348
- License:
- Abstract: Multi-dimensional time series data, such as matrix and tensor-variate time series, are increasingly prevalent in fields such as economics, finance, and climate science. Traditional Transformer models, though adept with sequential data, do not effectively preserve these multi-dimensional structures, as their internal operations in effect flatten multi-dimensional observations into vectors, thereby losing critical multi-dimensional relationships and patterns. To address this, we introduce the Tensor-Augmented Transformer (TEAFormer), a novel method that incorporates tensor expansion and compression within the Transformer framework to maintain and leverage the inherent multi-dimensional structures, thus reducing computational costs and improving prediction accuracy. The core feature of the TEAFormer, the Tensor-Augmentation (TEA) module, utilizes tensor expansion to enhance multi-view feature learning and tensor compression for efficient information aggregation and reduced computational load. The TEA module is not just a specific model architecture but a versatile component that is highly compatible with the attention mechanism and the encoder-decoder structure of Transformers, making it adaptable to existing Transformer architectures. Our comprehensive experiments, which integrate the TEA module into three popular time series Transformer models across three real-world benchmarks, show significant performance enhancements, highlighting the potential of TEAFormers for cutting-edge time series forecasting.
Related papers
- LSEAttention is All You Need for Time Series Forecasting [0.0]
Transformer-based architectures have achieved remarkable success in natural language processing and computer vision.
I introduce textbfLSEAttention, an approach designed to address entropy collapse and training instability commonly observed in transformer models.
arXiv Detail & Related papers (2024-10-31T09:09:39Z) - PRformer: Pyramidal Recurrent Transformer for Multivariate Time Series Forecasting [82.03373838627606]
Self-attention mechanism in Transformer architecture requires positional embeddings to encode temporal order in time series prediction.
We argue that this reliance on positional embeddings restricts the Transformer's ability to effectively represent temporal sequences.
We present a model integrating PRE with a standard Transformer encoder, demonstrating state-of-the-art performance on various real-world datasets.
arXiv Detail & Related papers (2024-08-20T01:56:07Z) - UniTST: Effectively Modeling Inter-Series and Intra-Series Dependencies for Multivariate Time Series Forecasting [98.12558945781693]
We propose a transformer-based model UniTST containing a unified attention mechanism on the flattened patch tokens.
Although our proposed model employs a simple architecture, it offers compelling performance as shown in our experiments on several datasets for time series forecasting.
arXiv Detail & Related papers (2024-06-07T14:39:28Z) - iTransformer: Inverted Transformers Are Effective for Time Series Forecasting [62.40166958002558]
We propose iTransformer, which simply applies the attention and feed-forward network on the inverted dimensions.
The iTransformer model achieves state-of-the-art on challenging real-world datasets.
arXiv Detail & Related papers (2023-10-10T13:44:09Z) - DuETT: Dual Event Time Transformer for Electronic Health Records [14.520791492631114]
We introduce the DuETT architecture, an extension of Transformers designed to attend over both time and event type dimensions.
DuETT uses an aggregated input where sparse time series are transformed into a regular sequence with fixed length.
Our model outperforms state-of-the-art deep learning models on multiple downstream tasks from the MIMIC-IV and PhysioNet-2012 EHR datasets.
arXiv Detail & Related papers (2023-04-25T17:47:48Z) - FormerTime: Hierarchical Multi-Scale Representations for Multivariate
Time Series Classification [53.55504611255664]
FormerTime is a hierarchical representation model for improving the classification capacity for the multivariate time series classification task.
It exhibits three aspects of merits: (1) learning hierarchical multi-scale representations from time series data, (2) inheriting the strength of both transformers and convolutional networks, and (3) tacking the efficiency challenges incurred by the self-attention mechanism.
arXiv Detail & Related papers (2023-02-20T07:46:14Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
Long-term time-series forecasting (LTTF) has become a pressing demand in many applications, such as wind power supply planning.
Transformer models have been adopted to deliver high prediction capacity because of the high computational self-attention mechanism.
We propose an efficient Transformerbased model, named Conformer, which differentiates itself from existing methods for LTTF in three aspects.
arXiv Detail & Related papers (2023-01-05T13:59:29Z) - A K-variate Time Series Is Worth K Words: Evolution of the Vanilla
Transformer Architecture for Long-term Multivariate Time Series Forecasting [52.33042819442005]
Transformer has become the de facto solution for MTSF, especially for the long-term cases.
In this study, we point out that the current tokenization strategy in MTSF Transformer architectures ignores the token inductive bias of Transformers.
We make a series of evolution on the basic architecture of the vanilla MTSF transformer.
Surprisingly, the evolved simple transformer architecture is highly effective, which successfully avoids the over-smoothing phenomena in the vanilla MTSF transformer.
arXiv Detail & Related papers (2022-12-06T07:00:31Z) - TCCT: Tightly-Coupled Convolutional Transformer on Time Series
Forecasting [6.393659160890665]
We propose the concept of tightly-coupled convolutional Transformer(TCCT) and three TCCT architectures.
Our experiments on real-world datasets show that our TCCT architectures could greatly improve the performance of existing state-of-art Transformer models.
arXiv Detail & Related papers (2021-08-29T08:49:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.