論文の概要: Guidance Disentanglement Network for Optics-Guided Thermal UAV Image Super-Resolution
- arxiv url: http://arxiv.org/abs/2410.20466v1
- Date: Sun, 27 Oct 2024 14:49:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:21:23.834281
- Title: Guidance Disentanglement Network for Optics-Guided Thermal UAV Image Super-Resolution
- Title(参考訳): 光学誘導熱UAV画像超解像のための誘導遠絡ネットワーク
- Authors: Zhicheng Zhao, Juanjuan Gu, Chenglong Li, Chun Wang, Zhongling Huang, Jin Tang,
- Abstract要約: オプティクス誘導熱UAV画像超解像(OTUAV-SR)は大きな研究関心を集めている。
既存の方法は、光学画像から誘導特徴を生成するために単一の誘導モデルを用いており、熱UAV画像の超高解像度化を支援する。
本稿では,典型的なUAVシナリオ属性に従って光画像表現をアンタングル化する,新しい誘導ディアンタングルメントネットワーク(GDNet)を提案する。
- 参考スコア(独自算出の注目度): 29.036286773684328
- License:
- Abstract: Optics-guided Thermal UAV image Super-Resolution (OTUAV-SR) has attracted significant research interest due to its potential applications in security inspection, agricultural measurement, and object detection. Existing methods often employ single guidance model to generate the guidance features from optical images to assist thermal UAV images super-resolution. However, single guidance models make it difficult to generate effective guidance features under favorable and adverse conditions in UAV scenarios, thus limiting the performance of OTUAV-SR. To address this issue, we propose a novel Guidance Disentanglement network (GDNet), which disentangles the optical image representation according to typical UAV scenario attributes to form guidance features under both favorable and adverse conditions, for robust OTUAV-SR. Moreover, we design an attribute-aware fusion module to combine all attribute-based optical guidance features, which could form a more discriminative representation and fit the attribute-agnostic guidance process. To facilitate OTUAV-SR research in complex UAV scenarios, we introduce VGTSR2.0, a large-scale benchmark dataset containing 3,500 aligned optical-thermal image pairs captured under diverse conditions and scenes. Extensive experiments on VGTSR2.0 demonstrate that GDNet significantly improves OTUAV-SR performance over state-of-the-art methods, especially in the challenging low-light and foggy environments commonly encountered in UAV scenarios. The dataset and code will be publicly available at https://github.com/Jocelyney/GDNet.
- Abstract(参考訳): 光学誘導型熱UAV画像超解像(OTUAV-SR)は、セキュリティ検査、農業計測、物体検出に応用される可能性から、大きな研究関心を集めている。
既存の方法は、光学画像から誘導特徴を生成するために単一の誘導モデルを用いており、熱UAV画像の超高解像度化を支援する。
しかし、単一誘導モデルでは、UAVシナリオにおいて有利かつ有害な条件下で効果的な誘導機能の生成が困難となり、OTUAV-SRの性能が制限される。
この問題に対処するため、我々は、OTUAV-SRを堅牢にするために、UAVシナリオの典型的な属性に従って光学画像表現をアンタングル化し、好条件と悪条件の両方でガイダンス特徴を形成する新しい誘導ディアングルネットワーク(GDNet)を提案する。
さらに,属性に基づく光誘導機能を組み合わせた属性認識型融合モジュールを設計し,より識別的な表現を形成し,属性に依存しない誘導プロセスに適合させる。
複雑なUAVシナリオにおけるOTUAV-SR研究を容易にするために,様々な条件や場面で捉えた3500個の光熱画像対を含む大規模ベンチマークデータセットであるVGTSR2.0を紹介した。
VGTSR2.0に関する大規模な実験により、GDNetは最先端の手法よりもOTUAV-SRの性能を著しく改善することを示した。
データセットとコードはhttps://github.com/Jocelyney/GDNet.comで公開される。
関連論文リスト
- Image2Sentence based Asymmetrical Zero-shot Composed Image Retrieval [92.13664084464514]
合成画像検索(CIR)の課題は,検索画像とユーザの意図を記述したテキストに基づいて画像を取得することである。
既存の手法は、CIRタスクにおける高度な大規模視覚言語(VL)モデルにおいて大きな進歩を遂げているが、それらは一般的に、モデルトレーニングのためのラベル付き三重項の欠如とリソース制限された環境への展開の困難という2つの大きな問題に悩まされている。
本稿では、VLモデルを利用して合成学習のためのラベルなし画像のみに依存する画像2Sentenceに基づく非対称ゼロショット合成画像検索(ISA)を提案する。
論文 参考訳(メタデータ) (2024-03-03T07:58:03Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - UAV-Sim: NeRF-based Synthetic Data Generation for UAV-based Perception [62.71374902455154]
ニューラルレンダリングの最近の進歩を利用して、静的および動的ノベルビューUAVベースの画像レンダリングを改善する。
本研究では,主に実データと合成データのハイブリッドセットに基づいて最先端検出モデルが最適化された場合,性能が大幅に向上することを示す。
論文 参考訳(メタデータ) (2023-10-25T00:20:37Z) - LSwinSR: UAV Imagery Super-Resolution based on Linear Swin Transformer [7.3817359680010615]
超高分解能技術は無人航空機(UAV)に特に有用である
本稿では,UAV画像の高分解能化のために,最先端のSwin Transformerに基づく新しいネットワークを提案する。
論文 参考訳(メタデータ) (2023-03-17T20:14:10Z) - Multi-Modal Domain Fusion for Multi-modal Aerial View Object
Classification [4.438928487047433]
マルチモーダルデータから領域不変性を学習するために,新しいマルチモーダルドメイン融合(MDF)ネットワークを提案する。
ネットワークはTrack-1で25.3%、Track-2でトップ5で34.26%の精度でトップ10のパフォーマンスを達成した。
論文 参考訳(メタデータ) (2022-12-14T05:14:02Z) - PSNet: Parallel Symmetric Network for Video Salient Object Detection [85.94443548452729]
我々は,PSNet という名前のアップ・ダウン・パラレル対称性を持つ VSOD ネットワークを提案する。
2つの並列ブランチが、ビデオの完全サリエンシ復号化を実現するために設定されている。
論文 参考訳(メタデータ) (2022-10-12T04:11:48Z) - Attention Guided Network for Salient Object Detection in Optical Remote
Sensing Images [16.933770557853077]
光リモートセンシング画像(RSI-SOD)における局所物体検出は非常に難しい作業である。
本稿では,光学RSIにおけるSODのための新しい注意誘導ネットワーク(AGNet)を提案する。
AGNetは、他の最先端の手法と比較して、競争力がある。
論文 参考訳(メタデータ) (2022-07-05T01:01:03Z) - Self-aligned Spatial Feature Extraction Network for UAV Vehicle
Re-identification [3.449626476434765]
同じ色とタイプを持つ車両は、UAVの観点から非常に類似した外観を示している。
最近の研究は、地域的特徴と構成要素的特徴によって区別される情報を抽出する傾向がある。
効率的なきめ細かい特徴を抽出し、退屈な注釈付け作業を避けるために、この手紙は教師なしの自己整合ネットワークを開発する。
論文 参考訳(メタデータ) (2022-01-08T14:25:54Z) - Anti-UAV: A Large Multi-Modal Benchmark for UAV Tracking [59.06167734555191]
Unmanned Aerial Vehicle (UAV)は、商業とレクリエーションの両方に多くの応用を提供している。
我々は、UAVを追跡し、位置や軌道などの豊富な情報を提供するという課題を考察する。
300以上のビデオペアが580k以上の手動で注釈付きバウンディングボックスを含むデータセット、Anti-UAVを提案します。
論文 参考訳(メタデータ) (2021-01-21T07:00:15Z) - A Parallel Down-Up Fusion Network for Salient Object Detection in
Optical Remote Sensing Images [82.87122287748791]
光リモートセンシング画像(RSI)における有意な物体検出のための新しい並列ダウンアップフュージョンネットワーク(PDF-Net)を提案する。
In-pathの低レベル・高レベルな特徴とクロスパスの多解像度な特徴をフル活用して、多様なスケールのサルエントオブジェクトを識別し、散らかった背景を抑える。
ORSSDデータセットの実験により、提案したネットワークは定性的かつ定量的に最先端のアプローチよりも優れていることが示された。
論文 参考訳(メタデータ) (2020-10-02T05:27:57Z) - Dual Semantic Fusion Network for Video Object Detection [35.175552056938635]
外部ガイダンスのない統合融合フレームワークにおいて,フレームレベルとインスタンスレベルの両方のセマンティクスをフル活用するためのデュアルセマンティクス・フュージョン・ネットワーク(DSFNet)を提案する。
提案したDSFNetは、多粒度融合によりより堅牢な特徴を生成でき、外部ガイダンスの不安定性の影響を避けることができる。
論文 参考訳(メタデータ) (2020-09-16T06:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。