Is Moral Self-correction An Innate Capability of Large Language Models? A Mechanistic Analysis to Self-correction
- URL: http://arxiv.org/abs/2410.20513v1
- Date: Sun, 27 Oct 2024 16:52:21 GMT
- Title: Is Moral Self-correction An Innate Capability of Large Language Models? A Mechanistic Analysis to Self-correction
- Authors: Zimo Qi, Guangliang Liu, Kristen Marie Johnson, Lu Chen,
- Abstract summary: We aim to answer two fundamental questions for moral self-correction.
We examine how different self-correction components interact to intervene the embedded morality within hidden states.
We propose a validation framework, self-distinguish, that requires effective self-correction.
- Score: 7.077348519490594
- License:
- Abstract: Though intensive attentions to the self-correction capability of Large Language Models (LLMs), the underlying mechanism of this capability is still under-explored. In this paper, we aim to answer two fundamental questions for moral self-correction: (1) how different components in self-correction, such as Chain-of-Thought (CoT) reasoning, external feedback, and instructional prompts, interact to enable moral self-correction; and (2) is the self-correction one of LLMs' innate capabilities? To answer the first question, we examine how different self-correction components interact to intervene the embedded morality within hidden states, therefore contributing to different performance. For the second question, we (i) evaluate the robustness of moral self-correction by introducing natural language interventions of weak evidence into prompts; (ii) propose a validation framework, self-distinguish, that requires effective self-correction to enable LLMs to distinguish between desirable and undesirable outputs. Our experimental results indicate that there is no universally optimal self-correction method for the tasks considered, although external feedback and CoT can contribute to additional performance gains. However, our mechanistic analysis reveals negative interactions among instructional prompts, CoT, and external feedback, suggesting a conflict between internal knowledge and external feedback. The self-distinguish experiments demonstrate that while LLMs can self-correct their responses, they are unable to reliably distinguish between desired and undesired outputs. With our empirical evidence, we can conclude that moral self-correction is not an innate capability of LLMs acquired during pretraining.
Related papers
- Intrinsic Self-correction for Enhanced Morality: An Analysis of Internal Mechanisms and the Superficial Hypothesis [35.734425912914176]
Large Language Models (LLMs) are capable of producing content that perpetuates stereotypes, discrimination, and toxicity.
The recently proposed moral self-correction is a computationally efficient method for reducing harmful content in the responses of LLMs.
We argue that self-correction can help LLMs find a shortcut to more morally correct output, rather than truly reducing the immorality stored in hidden states.
arXiv Detail & Related papers (2024-07-21T22:50:11Z) - Large Language Models have Intrinsic Self-Correction Ability [16.831123666582755]
Large language models suffer from hallucinations that will cause performance degradation.
One promising solution to improve the LLMs' performance is to ask LLMs to revise their answer after generation.
In intrinsic self-correction is considered a promising direction because it does not utilize external knowledge.
arXiv Detail & Related papers (2024-06-21T22:29:40Z) - On the Intrinsic Self-Correction Capability of LLMs: Uncertainty and Latent Concept [34.51532840859617]
We show that appropriate instructions can guide Large Language Models to a convergence state, wherein additional self-correction steps do not yield further performance improvements.
We provide a mathematical formulation indicating that the activated latent concept drives the convergence of the model uncertainty and self-correction performance.
arXiv Detail & Related papers (2024-06-04T14:55:43Z) - A Theoretical Understanding of Self-Correction through In-context Alignment [51.622068973630796]
Large language models (LLMs) are capable of improving their abilities purely by self-correction.
We show that when LLMs give relatively accurate self-examinations as rewards, they are capable of refining responses in an in-context way.
Inspired by these findings, we also illustrate applications of self-correction, such as defending against LLM jailbreaks.
arXiv Detail & Related papers (2024-05-28T22:33:02Z) - Small Language Models Need Strong Verifiers to Self-Correct Reasoning [69.94251699982388]
Self-correction has emerged as a promising solution to boost the reasoning performance of large language models (LLMs)
This work explores whether small (= 13B) language models (LMs) have the ability of self-correction on reasoning tasks with minimal inputs from stronger LMs.
arXiv Detail & Related papers (2024-04-26T03:41:28Z) - Distilling Reasoning Ability from Large Language Models with Adaptive Thinking [54.047761094420174]
Chain of thought finetuning (cot-finetuning) aims to endow small language models (SLM) with reasoning ability to improve their performance towards specific tasks.
Most existing cot-finetuning methods adopt a pre-thinking mechanism, allowing the SLM to generate a rationale before providing an answer.
This mechanism enables SLM to analyze and think about complex questions, but it also makes answer correctness highly sensitive to minor errors in rationale.
We propose a robust post-thinking mechanism to generate answers before rationale.
arXiv Detail & Related papers (2024-04-14T07:19:27Z) - Confidence Matters: Revisiting Intrinsic Self-Correction Capabilities of Large Language Models [23.42725642076256]
Large Language Models (LLMs) have catalyzed an increasing interest in their self-correction capabilities.
This paper presents a comprehensive investigation into the intrinsic self-correction of LLMs.
We develop an "If-or-Else" (IoE) prompting framework, designed to guide LLMs in assessing their own "confidence"
arXiv Detail & Related papers (2024-02-19T21:38:02Z) - Self-Alignment for Factuality: Mitigating Hallucinations in LLMs via Self-Evaluation [71.91287418249688]
Large language models (LLMs) often struggle with factual inaccuracies, even when they hold relevant knowledge.
We leverage the self-evaluation capability of an LLM to provide training signals that steer the model towards factuality.
We show that the proposed self-alignment approach substantially enhances factual accuracy over Llama family models across three key knowledge-intensive tasks.
arXiv Detail & Related papers (2024-02-14T15:52:42Z) - Improving the Reliability of Large Language Models by Leveraging
Uncertainty-Aware In-Context Learning [76.98542249776257]
Large-scale language models often face the challenge of "hallucination"
We introduce an uncertainty-aware in-context learning framework to empower the model to enhance or reject its output in response to uncertainty.
arXiv Detail & Related papers (2023-10-07T12:06:53Z) - Large Language Models Cannot Self-Correct Reasoning Yet [78.16697476530994]
Large Language Models (LLMs) have emerged as a groundbreaking technology with their unparalleled text generation capabilities.
Concerns persist regarding the accuracy and appropriateness of their generated content.
A contemporary methodology, self-correction, has been proposed as a remedy to these issues.
arXiv Detail & Related papers (2023-10-03T04:56:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.