On the Intrinsic Self-Correction Capability of LLMs: Uncertainty and Latent Concept
- URL: http://arxiv.org/abs/2406.02378v1
- Date: Tue, 4 Jun 2024 14:55:43 GMT
- Title: On the Intrinsic Self-Correction Capability of LLMs: Uncertainty and Latent Concept
- Authors: Guangliang Liu, Haitao Mao, Bochuan Cao, Zhiyu Xue, Kristen Johnson, Jiliang Tang, Rongrong Wang,
- Abstract summary: We show that appropriate instructions can guide Large Language Models to a convergence state, wherein additional self-correction steps do not yield further performance improvements.
We provide a mathematical formulation indicating that the activated latent concept drives the convergence of the model uncertainty and self-correction performance.
- Score: 34.51532840859617
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) can improve their responses when instructed to do so, a capability known as self-correction. When these instructions lack specific details about the issues in the response, this is referred to as leveraging the intrinsic self-correction capability. The empirical success of self-correction can be found in various applications, e.g., text detoxification and social bias mitigation. However, leveraging this self-correction capability may not always be effective, as it has the potential to revise an initially correct response into an incorrect one. In this paper, we endeavor to understand how and why leveraging the self-correction capability is effective. We identify that appropriate instructions can guide LLMs to a convergence state, wherein additional self-correction steps do not yield further performance improvements. We empirically demonstrate that model uncertainty and activated latent concepts jointly characterize the effectiveness of self-correction. Furthermore, we provide a mathematical formulation indicating that the activated latent concept drives the convergence of the model uncertainty and self-correction performance. Our analysis can also be generalized to the self-correction behaviors observed in Vision-Language Models (VLMs). Moreover, we highlight that task-agnostic debiasing can benefit from our principle in terms of selecting effective fine-tuning samples. Such initial success demonstrates the potential extensibility for better instruction tuning and safety alignment.
Related papers
- Is Moral Self-correction An Innate Capability of Large Language Models? A Mechanistic Analysis to Self-correction [7.077348519490594]
We aim to answer two fundamental questions for moral self-correction.
We examine how different self-correction components interact to intervene the embedded morality within hidden states.
We propose a validation framework, self-distinguish, that requires effective self-correction.
arXiv Detail & Related papers (2024-10-27T16:52:21Z) - Self-Correction is More than Refinement: A Learning Framework for Visual and Language Reasoning Tasks [43.96835245022083]
Self-correction that instructs models to refine their outputs presents a promising solution to this issue.
This study investigates the self-correction capabilities of Vision-Language Models during both inference and fine-tuning stages.
arXiv Detail & Related papers (2024-10-05T06:28:54Z) - Training Language Models to Self-Correct via Reinforcement Learning [98.35197671595343]
Self-correction has been found to be largely ineffective in modern large language models (LLMs)
We develop a multi-turn online reinforcement learning approach, SCoRe, that significantly improves an LLM's self-correction ability using entirely self-generated data.
We find that SCoRe achieves state-of-the-art self-correction performance, improving the base models' self-correction by 15.6% and 9.1% respectively on MATH and HumanEval.
arXiv Detail & Related papers (2024-09-19T17:16:21Z) - Large Language Models have Intrinsic Self-Correction Ability [16.831123666582755]
Large language models suffer from hallucinations that will cause performance degradation.
One promising solution to improve the LLMs' performance is to ask LLMs to revise their answer after generation.
In intrinsic self-correction is considered a promising direction because it does not utilize external knowledge.
arXiv Detail & Related papers (2024-06-21T22:29:40Z) - Tuning-Free Accountable Intervention for LLM Deployment -- A
Metacognitive Approach [55.613461060997004]
Large Language Models (LLMs) have catalyzed transformative advances across a spectrum of natural language processing tasks.
We propose an innovative textitmetacognitive approach, dubbed textbfCLEAR, to equip LLMs with capabilities for self-aware error identification and correction.
arXiv Detail & Related papers (2024-03-08T19:18:53Z) - Confidence Matters: Revisiting Intrinsic Self-Correction Capabilities of Large Language Models [23.42725642076256]
Large Language Models (LLMs) have catalyzed an increasing interest in their self-correction capabilities.
This paper presents a comprehensive investigation into the intrinsic self-correction of LLMs.
We develop an "If-or-Else" (IoE) prompting framework, designed to guide LLMs in assessing their own "confidence"
arXiv Detail & Related papers (2024-02-19T21:38:02Z) - Self-Alignment for Factuality: Mitigating Hallucinations in LLMs via Self-Evaluation [71.91287418249688]
Large language models (LLMs) often struggle with factual inaccuracies, even when they hold relevant knowledge.
We leverage the self-evaluation capability of an LLM to provide training signals that steer the model towards factuality.
We show that the proposed self-alignment approach substantially enhances factual accuracy over Llama family models across three key knowledge-intensive tasks.
arXiv Detail & Related papers (2024-02-14T15:52:42Z) - Improving the Reliability of Large Language Models by Leveraging
Uncertainty-Aware In-Context Learning [76.98542249776257]
Large-scale language models often face the challenge of "hallucination"
We introduce an uncertainty-aware in-context learning framework to empower the model to enhance or reject its output in response to uncertainty.
arXiv Detail & Related papers (2023-10-07T12:06:53Z) - Large Language Models Cannot Self-Correct Reasoning Yet [78.16697476530994]
Large Language Models (LLMs) have emerged as a groundbreaking technology with their unparalleled text generation capabilities.
Concerns persist regarding the accuracy and appropriateness of their generated content.
A contemporary methodology, self-correction, has been proposed as a remedy to these issues.
arXiv Detail & Related papers (2023-10-03T04:56:12Z) - Learning Domain Adaptive Object Detection with Probabilistic Teacher [93.76128726257946]
We present a simple yet effective framework, termed as Probabilistic Teacher (PT)
PT aims to capture the uncertainty of unlabeled target data from a gradually evolving teacher and guides the learning of a student in a mutually beneficial manner.
We also present a novel Entropy Focal Loss (EFL) to further facilitate the uncertainty-guided self-training.
arXiv Detail & Related papers (2022-06-13T16:24:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.