Characterization of Noise using variants of Unitarity Randomized Benchmarking
- URL: http://arxiv.org/abs/2410.20528v2
- Date: Tue, 29 Oct 2024 10:51:20 GMT
- Title: Characterization of Noise using variants of Unitarity Randomized Benchmarking
- Authors: Adarsh Chandrashekar, Soumya Das, Goutam Paul,
- Abstract summary: Unitarity randomized benchmarking (URB) protocol is a method to estimate the coherence of noise induced by the quantum gates.
We for the first time implement the URB protocol in a quantum simulator with all the parameters and noise model are used from a real quantum device.
- Score: 6.376549579074444
- License:
- Abstract: Benchmarking of noise that is induced during the implementation of quantum gates is the main concern for practical quantum computers. Several protocols have been proposed that empirically calculate various metrics that quantify the error rates of the quantum gates chosen from a preferred gate set. Unitarity randomized benchmarking (URB) protocol is a method to estimate the coherence of noise induced by the quantum gates which is measured by the metric \textit{unitarity}. In this paper, we for the first time, implement the URB protocol in a quantum simulator with all the parameters and noise model are used from a real quantum device. The direct implementation of the URB protocol in a quantum device is not possible using current technologies, as it requires the preparation of mixed states. To overcome this challenge, we propose a modification of the URB protocol, namely the m-URB protocol, that enables us to practically implement it on any quantum device. We validate our m-URB protocol using two single-qubit noise channels -- (a) depolarising channel and (b) bit-flip channel. We further alter the m-URB protocol, namely, native gate URB or Ng-URB protocol, to study the noise in the native gates into which the quantum circuits are compiled in a quantum computer. Using our Ng-URB protocol, we can also detect the presence of cross-talk errors which are correlated errors caused due to non-local and entangling gates such as CNOT gate. For illustration, we simulate the noise of the native gates taking the noise parameter from two real IBM-Q processors.
Related papers
- QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Dynamical subset sampling of quantum error correcting protocols [0.0]
We show the capabilities of dynamical subset sampling with examples from fault-tolerant (FT) QEC.
We show that, in a typical stabilizer simulation with incoherent Pauli noise of strength $p = 10-3$, our method can reach a required sampling accuracy on the logical failure rate.
arXiv Detail & Related papers (2023-09-22T10:32:20Z) - Benchmarking universal quantum gates via channel spectrum [0.0]
Noise remains the major obstacle to scalable quantum computation.
We propose a method to infer the noise properties of the target gate, including process fidelity, fidelity, and some unitary parameters, from the eigenvalues of its noisy channel.
Our method is insensitive to state-preparation and measurement errors, and importantly, can benchmark universal gates and is scalable to many-qubit systems.
arXiv Detail & Related papers (2023-01-05T13:18:19Z) - Single-photon-memory measurement-device-independent quantum secure
direct communication [63.75763893884079]
Quantum secure direct communication (QSDC) uses the quantum channel to transmit information reliably and securely.
In order to eliminate the security loopholes resulting from practical detectors, the measurement-device-independent (MDI) QSDC protocol has been proposed.
We propose a single-photon-memory MDI QSDC protocol (SPMQC) for dispensing with high-performance quantum memory.
arXiv Detail & Related papers (2022-12-12T02:23:57Z) - Testing quantum computers with the protocol of quantum state matching [0.0]
The presence of noise in quantum computers hinders their effective operation.
We suggest the application of the so-called quantum state matching protocol for testing purposes.
For systematically varied inputs we find that the device with the smaller quantum volume performs better on our tests than the one with larger quantum volume.
arXiv Detail & Related papers (2022-10-18T08:25:34Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Measurement-based interleaved randomised benchmarking using IBM
processors [0.0]
Noise is often the dominant factor preventing the successful realisation of advanced quantum computations.
We propose an interleaved benchmarking protocol for measurement-based quantum computers.
We show that our protocol is able to detect large noise variations in different measurement-based implementations of a gate.
arXiv Detail & Related papers (2022-03-28T18:04:24Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - All-Optical Long-Distance Quantum Communication with
Gottesman-Kitaev-Preskill qubits [0.0]
Quantum repeaters are a promising platform for realizing long-distance quantum communication.
In this work, we consider implementing a quantum repeater protocol using Gottesman-Kitaev-Preskill qubits.
arXiv Detail & Related papers (2020-11-30T15:14:34Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.