Measurement-based interleaved randomised benchmarking using IBM
processors
- URL: http://arxiv.org/abs/2203.14995v1
- Date: Mon, 28 Mar 2022 18:04:24 GMT
- Title: Measurement-based interleaved randomised benchmarking using IBM
processors
- Authors: Conrad Strydom and Mark Tame
- Abstract summary: Noise is often the dominant factor preventing the successful realisation of advanced quantum computations.
We propose an interleaved benchmarking protocol for measurement-based quantum computers.
We show that our protocol is able to detect large noise variations in different measurement-based implementations of a gate.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computers have the potential to outperform classical computers at
certain computational tasks, such as prime factorisation and unstructured
searching. However, experimental realisations of quantum computers are subject
to noise. Quantifying the noise is of fundamental importance, since noise is
often the dominant factor preventing the successful realisation of advanced
quantum computations. Here we propose an interleaved randomised benchmarking
protocol for measurement-based quantum computers, in which any single-qubit
measurement-based 2-design can be used to estimate the fidelity of any
single-qubit measurement-based gate. We test our protocol by using a weak
approximate measurement-based 2-design to estimate the fidelity of the Hadamard
gate and the T gate (a universal single-qubit set) on IBM superconducting
quantum computers. To this end, single-qubit measurements were performed on
entangled linear cluster states of up to 31 qubits. Our estimated gate
fidelities show good agreement with gate fidelities calculated from process
tomography results. Furthermore, by artificially increasing noise in the
measurement-based gates, we were able to show that our protocol is able to
detect large noise variations in different measurement-based implementations of
a gate.
Related papers
- On-Chip Verified Quantum Computation with an Ion-Trap Quantum Processing Unit [0.5497663232622965]
We present and experimentally demonstrate a novel approach to verification and benchmarking of quantum computing.
Unlike previous information-theoretically secure verification protocols, our approach is implemented entirely on-chip.
Our results pave the way for more accessible and efficient verification and benchmarking strategies in near-term quantum devices.
arXiv Detail & Related papers (2024-10-31T16:54:41Z) - Characterization of Noise using variants of Unitarity Randomized Benchmarking [6.376549579074444]
Unitarity randomized benchmarking (URB) protocol is a method to estimate the coherence of noise induced by the quantum gates.
We for the first time implement the URB protocol in a quantum simulator with all the parameters and noise model are used from a real quantum device.
arXiv Detail & Related papers (2024-10-27T17:46:51Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Robust and efficient verification of graph states in blind
measurement-based quantum computation [52.70359447203418]
Blind quantum computation (BQC) is a secure quantum computation method that protects the privacy of clients.
It is crucial to verify whether the resource graph states are accurately prepared in the adversarial scenario.
Here, we propose a robust and efficient protocol for verifying arbitrary graph states with any prime local dimension.
arXiv Detail & Related papers (2023-05-18T06:24:45Z) - Benchmarking universal quantum gates via channel spectrum [0.0]
Noise remains the major obstacle to scalable quantum computation.
We propose a method to infer the noise properties of the target gate, including process fidelity, fidelity, and some unitary parameters, from the eigenvalues of its noisy channel.
Our method is insensitive to state-preparation and measurement errors, and importantly, can benchmark universal gates and is scalable to many-qubit systems.
arXiv Detail & Related papers (2023-01-05T13:18:19Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
We study a systematic perturbative expansion in miscalibrated parameters of the Molmer-Sorensen entangling gate.
We compute the gate evolution operator which allows us to obtain relevant key properties.
We verify the predictions from our model by benchmarking them against measurements in a trapped-ion quantum processor.
arXiv Detail & Related papers (2021-12-10T10:56:16Z) - Benchmarking Small-Scale Quantum Devices on Computing Graph Edit
Distance [52.77024349608834]
Graph Edit Distance (GED) measures the degree of (dis)similarity between two graphs in terms of the operations needed to make them identical.
In this paper we present a comparative study of two quantum approaches to computing GED.
arXiv Detail & Related papers (2021-11-19T12:35:26Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Perturbative tomography of small errors in quantum gates [5.625946422295428]
We propose an efficient protocol to reconstruct a set of high-fidelity quantum gates.
The protocol is based on a perturbative approach and has two stages.
We show that the number of measurements needed in our protocol scales logarithmically with the error rate of gates.
arXiv Detail & Related papers (2020-09-17T10:10:08Z) - Experimental characterisation of unsharp qubit observables and
sequential measurement incompatibility via quantum random access codes [0.0]
We report an experimental implementation of unsharp qubit measurements in a sequential communication protocol.
The protocol involves three parties; the first party prepares a qubit system, the second party performs operations which return a classical and quantum outcome, and the latter is measured by the third party.
arXiv Detail & Related papers (2020-01-14T13:37:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.