Detection of adrenal anomalous findings in spinal CT images using multi model graph aggregation
- URL: http://arxiv.org/abs/2410.20568v2
- Date: Thu, 31 Oct 2024 07:43:52 GMT
- Title: Detection of adrenal anomalous findings in spinal CT images using multi model graph aggregation
- Authors: Shabalin Carmel, Shenkman Israel, Shelef Ilan, Ben-Arie Gal, Alex Geftler, Shahar Yuval,
- Abstract summary: Low back pain is the second most frequently reported to primary care physicians.
Low back pain affects 50 to 80 percent of the population in a lifetime.
- Score: 0.0
- License:
- Abstract: Low back pain is the symptom that is the second most frequently reported to primary care physicians, effecting 50 to 80 percent of the population in a lifetime, resulting in multiple referrals of patients suffering from back problems, to CT and MRI scans, which are then examined by radiologists. The radiologists examining these spinal scans naturally focus on spinal pathologies and might miss other types of abnormalities, and in particular, abdominal ones, such as malignancies. Nevertheless, the patients whose spine was scanned might as well have malignant and other abdominal pathologies. Thus, clinicians have suggested the need for computerized assistance and decision support in screening spinal scans for additional abnormalities. In the current study, We have addressed the important case of detecting suspicious lesions in the adrenal glands as an example for the overall methodology we have developed. A patient CT scan is integrated from multiple slices with an axial orientation. Our method determines whether a patient has an abnormal adrenal gland, and localises the abnormality if it exists. Our method is composed of three deep learning models; each model has a different task for achieving the final goal. We call our compound method the Multi Model Graph Aggregation MMGA method. The novelty in this study is twofold. First, the use, for an important screening task, of CT scans that are originally focused and tuned for imaging the spine, which were acquired from patients with potential spinal disorders, for detection of a totally different set of abnormalities such as abdominal Adrenal glands pathologies. Second, we have built a complex pipeline architecture composed from three deep learning models that can be utilized for other organs (such as the pancreas or the kidney), or for similar applications, but using other types of imaging, such as MRI.
Related papers
- UMedNeRF: Uncertainty-aware Single View Volumetric Rendering for Medical
Neural Radiance Fields [38.62191342903111]
We propose an Uncertainty-aware MedNeRF (UMedNeRF) network based on generated radiation fields.
We show the results of CT projection rendering with a single X-ray and compare our method with other methods based on generated radiation fields.
arXiv Detail & Related papers (2023-11-10T02:47:15Z) - Can GPT-4V(ision) Serve Medical Applications? Case Studies on GPT-4V for
Multimodal Medical Diagnosis [59.35504779947686]
GPT-4V is OpenAI's newest model for multimodal medical diagnosis.
Our evaluation encompasses 17 human body systems.
GPT-4V demonstrates proficiency in distinguishing between medical image modalities and anatomy.
It faces significant challenges in disease diagnosis and generating comprehensive reports.
arXiv Detail & Related papers (2023-10-15T18:32:27Z) - Context-Aware Transformers For Spinal Cancer Detection and Radiological
Grading [70.04389979779195]
This paper proposes a novel transformer-based model architecture for medical imaging problems involving analysis of vertebrae.
It considers two applications of such models in MR images: (a) detection of spinal metastases and the related conditions of vertebral fractures and metastatic cord compression.
We show that by considering the context of vertebral bodies in the image, SCT improves the accuracy for several gradings compared to previously published model.
arXiv Detail & Related papers (2022-06-27T10:31:03Z) - Explainable multiple abnormality classification of chest CT volumes with
AxialNet and HiResCAM [89.2175350956813]
We introduce the challenging new task of explainable multiple abnormality classification in volumetric medical images.
We propose a multiple instance learning convolutional neural network, AxialNet, that allows identification of top slices for each abnormality.
We then aim to improve the model's learning through a novel mask loss that leverages HiResCAM and 3D allowed regions.
arXiv Detail & Related papers (2021-11-24T01:14:33Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
We propose a one-stage detection framework termed SpineOne to simultaneously localize and classify degenerative discs and vertebrae from MRI slices.
SpineOne is built upon the following three key techniques: 1) a new design of the keypoint heatmap to facilitate simultaneous keypoint localization and classification; 2) the use of attention modules to better differentiate the representations between discs and vertebrae; and 3) a novel gradient-guided objective association mechanism to associate multiple learning objectives at the later training stage.
arXiv Detail & Related papers (2021-10-28T12:59:06Z) - MAG-Net: Mutli-task attention guided network for brain tumor
segmentation and classification [0.9176056742068814]
This paper proposes multi-task attention guided encoder-decoder network (MAG-Net) to classify and segment the brain tumor regions using MRI images.
The model achieved promising results as compared to existing state-of-the-art models.
arXiv Detail & Related papers (2021-07-26T16:51:00Z) - MADGAN: unsupervised Medical Anomaly Detection GAN using multiple
adjacent brain MRI slice reconstruction [24.423056428713718]
unsupervised Medical Anomaly Detection Generative Adversarial Network (MADGAN) is a novel two-step method using GAN-based multiple adjacent brain MRI slice reconstruction.
For training, we use two different datasets composed of 1,133 healthy T1-weighted (T1) and 135 healthy contrast-enhanced T1 (T1c) brain MRI scans for detecting Alzheimer's Disease (AD) and brain metastases/various diseases.
arXiv Detail & Related papers (2020-07-24T14:56:12Z) - A Convolutional Approach to Vertebrae Detection and Labelling in Whole
Spine MRI [70.04389979779195]
We propose a novel convolutional method for the detection and identification of vertebrae in whole spine MRIs.
This involves using a learnt vector field to group detected vertebrae corners together into individual vertebral bodies.
We demonstrate the clinical applicability of this method, using it for automated scoliosis detection in both lumbar and whole spine MR scans.
arXiv Detail & Related papers (2020-07-06T09:37:12Z) - Segmentation for Classification of Screening Pancreatic Neuroendocrine
Tumors [72.65802386845002]
This work presents comprehensive results to detect in the early stage the pancreatic neuroendocrine tumors (PNETs) in abdominal CT scans.
To the best of our knowledge, this task has not been studied before as a computational task.
Our approach outperforms state-of-the-art segmentation networks and achieves a sensitivity of $89.47%$ at a specificity of $81.08%$.
arXiv Detail & Related papers (2020-04-04T21:21:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.