論文の概要: SEG:Seeds-Enhanced Iterative Refinement Graph Neural Network for Entity Alignment
- arxiv url: http://arxiv.org/abs/2410.20733v1
- Date: Mon, 28 Oct 2024 04:50:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:18:15.993866
- Title: SEG:Seeds-Enhanced Iterative Refinement Graph Neural Network for Entity Alignment
- Title(参考訳): SEG:エンティティアライメントのためのSeeds-Enhanced Iterative Refinement Graph Neural Network
- Authors: Wei Ai, Yinghui Gao, Jianbin Li, Jiayi Du, Tao Meng, Yuntao Shou, Keqin Li,
- Abstract要約: 本稿では,マルチソースデータと反復的シード拡張を融合したソフトラベル伝搬フレームワークを提案する。
正試料間距離と負試料の差分処理を行う双方向重み付き共同損失関数を実装した。
提案手法は,既存の半教師付きアプローチよりも優れており,複数のデータセットにおいて優れた結果が得られた。
- 参考スコア(独自算出の注目度): 13.487673375206276
- License:
- Abstract: Entity alignment is crucial for merging knowledge across knowledge graphs, as it matches entities with identical semantics. The standard method matches these entities based on their embedding similarities using semi-supervised learning. However, diverse data sources lead to non-isomorphic neighborhood structures for aligned entities, complicating alignment, especially for less common and sparsely connected entities. This paper presents a soft label propagation framework that integrates multi-source data and iterative seed enhancement, addressing scalability challenges in handling extensive datasets where scale computing excels. The framework uses seeds for anchoring and selects optimal relationship pairs to create soft labels rich in neighborhood features and semantic relationship data. A bidirectional weighted joint loss function is implemented, which reduces the distance between positive samples and differentially processes negative samples, taking into account the non-isomorphic neighborhood structures. Our method outperforms existing semi-supervised approaches, as evidenced by superior results on multiple datasets, significantly improving the quality of entity alignment.
- Abstract(参考訳): エンティティのアライメントは、知識グラフをまたいだ知識のマージに不可欠である。
標準手法は, 半教師付き学習を用いて, それらの埋め込み類似性に基づいて, これらのエンティティをマッチングする。
しかし、多種多様なデータソースは、アライメントされたエンティティ、特にあまり一般的で疎結合なエンティティのアライメントを複雑にする非同型な近傍構造をもたらす。
本稿では,マルチソースデータと反復的シード拡張を統合したソフトラベル伝搬フレームワークを提案する。
このフレームワークは、種子をアンカーに使用し、最適な関係ペアを選択して、近隣の特徴と意味的関係データに富んだソフトラベルを作成する。
正サンプル間の距離を減らし、非同型近傍構造を考慮した負サンプルを差分処理する双方向重み付き共同損失関数を実装した。
提案手法は既存の半教師付きアプローチよりも優れており,複数のデータセットの優れた結果によって証明され,エンティティアライメントの品質が著しく向上している。
関連論文リスト
- Jointprop: Joint Semi-supervised Learning for Entity and Relation
Extraction with Heterogeneous Graph-based Propagation [13.418617500641401]
共同半教師付きエンティティと関係抽出のための不均一グラフに基づく伝搬フレームワークであるJointpropを提案する。
我々は、エンティティと関係候補から統一されたスパンベースのヘテロジニアスグラフを構築し、信頼度スコアに基づいてクラスラベルを伝搬する。
我々はNERおよびREタスクにおける最先端の半教師付きアプローチよりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-25T09:07:04Z) - Nearest Neighbor-Based Contrastive Learning for Hyperspectral and LiDAR
Data Classification [45.026868970899514]
本稿では,Nearest Neighbor-based Contrastive Learning Network (NNCNet)を提案する。
具体的には,近隣地域間のセマンティック関係を強化した近傍データ拡張手法を提案する。
さらに,HSIデータとLiDARデータ間の2次・高次特徴相互作用を生かしたバイリニアアテンションモジュールを設計する。
論文 参考訳(メタデータ) (2023-01-09T13:43:54Z) - Large-scale Entity Alignment via Knowledge Graph Merging, Partitioning
and Embedding [29.81122170002021]
本稿では,3つの視点から構造とアライメント損失を低減するため,スケーラブルなGNNベースのエンティティアライメント手法を提案する。
まず,中心性に基づく部分グラフ生成アルゴリズムを提案し,異なる部分グラフ間のブリッジとして機能するいくつかのランドマークエンティティをリコールする。
第二に、不完全近傍部分グラフから実体表現を復元する自己教師型実体再構成を導入する。
第三に、推論過程において、サブグラフの埋め込みをマージして、アライメント探索のための単一の空間を作る。
論文 参考訳(メタデータ) (2022-08-23T07:09:59Z) - Informed Multi-context Entity Alignment [27.679124991733907]
Informed Multi-context Entity Alignment (IMEA)モデルを提案する。
特にTransformerを導入し、関係、経路、近傍のコンテキストを柔軟にキャプチャする。
総論的推論は、埋め込み類似性と関係性/整合性の両方の機能に基づいてアライメント確率を推定するために用いられる。
いくつかのベンチマークデータセットの結果は、既存の最先端エンティティアライメント手法と比較して、IMEAモデルの優位性を示している。
論文 参考訳(メタデータ) (2022-01-02T06:29:30Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z) - Learning from Partially Overlapping Labels: Image Segmentation under
Annotation Shift [68.6874404805223]
腹部臓器分節の文脈におけるラベルの重複から学ぶためのいくつかの方法を提案する。
半教師付きアプローチと適応的クロスエントロピー損失を組み合わせることで、不均一な注釈付きデータをうまく活用できることが判明した。
論文 参考訳(メタデータ) (2021-07-13T09:22:24Z) - Mitigating Generation Shifts for Generalized Zero-Shot Learning [52.98182124310114]
一般化ゼロショット学習(英: Generalized Zero-Shot Learning、GZSL)は、学習中に見知らぬクラスが観察できない、見つからないサンプルを認識するために意味情報(属性など)を活用するタスクである。
本稿では,未知のデータ合成を効率よく,効率的に学習するための新しい生成シフト緩和フローフレームワークを提案する。
実験結果から,GSMFlowは従来のゼロショット設定と一般化されたゼロショット設定の両方において,最先端の認識性能を実現することが示された。
論文 参考訳(メタデータ) (2021-07-07T11:43:59Z) - EchoEA: Echo Information between Entities and Relations for Entity
Alignment [1.1470070927586016]
本稿では,エンティティ情報を関係に拡散し,エンティティにエコーバックする自己認識機構を活用した新しいフレームワーク Echo Entity Alignment (EchoEA) を提案する。
3つの実世界のクロスランガルデータセットの実験結果は、平均して96%で安定している。
論文 参考訳(メタデータ) (2021-07-07T07:34:21Z) - Cross-Supervised Joint-Event-Extraction with Heterogeneous Information
Networks [61.950353376870154]
Joint-event- Extractは、トリガとエンティティのタグからなるタグセットを備えたシーケンスからシーケンスまでのラベリングタスクである。
トリガやエンティティの抽出を交互に監督するクロススーパーバイザードメカニズム(CSM)を提案する。
我々の手法は、エンティティとトリガー抽出の両方において最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2020-10-13T11:51:17Z) - Learning to Combine: Knowledge Aggregation for Multi-Source Domain
Adaptation [56.694330303488435]
マルチソースドメイン適応(LtC-MSDA)フレームワークを併用する学習法を提案する。
簡単に言うと、知識グラフは様々なドメインのプロトタイプ上に構築され、セマンティックに隣接した表現間の情報伝達を実現する。
我々のアプローチは、既存の手法よりも顕著なマージンで優れています。
論文 参考訳(メタデータ) (2020-07-17T07:52:44Z) - Neighborhood Matching Network for Entity Alignment [71.24217694278616]
Neighborhood Matching Network (NMN)は、新しいエンティティアライメントフレームワークである。
NMNは、トポロジカル構造と近傍差の両方を捉えるために、エンティティ間の類似性を推定する。
まず、新しいグラフサンプリング法を用いて、各エンティティの識別的近傍を蒸留する。
その後、クロスグラフの近傍マッチングモジュールを採用し、与えられたエンティティペアの近傍差を共同で符号化する。
論文 参考訳(メタデータ) (2020-05-12T08:26:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。