Long-Tailed Out-of-Distribution Detection via Normalized Outlier Distribution Adaptation
- URL: http://arxiv.org/abs/2410.20807v2
- Date: Mon, 25 Nov 2024 12:14:11 GMT
- Title: Long-Tailed Out-of-Distribution Detection via Normalized Outlier Distribution Adaptation
- Authors: Wenjun Miao, Guansong Pang, Jin Zheng, Xiao Bai,
- Abstract summary: Key challenge in Out-of-Distribution (OOD) detection is the absence of ground-truth OOD samples during training.
We propose normalized outlier distribution adaptation (AdaptOD) to tackle this distribution shift problem.
AdaptOD effectively adapts a vanilla outlier distribution based on the outlier samples to the true OOD distribution.
- Score: 24.216526107669345
- License:
- Abstract: One key challenge in Out-of-Distribution (OOD) detection is the absence of ground-truth OOD samples during training. One principled approach to address this issue is to use samples from external datasets as outliers (i.e., pseudo OOD samples) to train OOD detectors. However, we find empirically that the outlier samples often present a distribution shift compared to the true OOD samples, especially in Long-Tailed Recognition (LTR) scenarios, where ID classes are heavily imbalanced, \ie, the true OOD samples exhibit very different probability distribution to the head and tailed ID classes from the outliers. In this work, we propose a novel approach, namely normalized outlier distribution adaptation (AdaptOD), to tackle this distribution shift problem. One of its key components is dynamic outlier distribution adaptation that effectively adapts a vanilla outlier distribution based on the outlier samples to the true OOD distribution by utilizing the OOD knowledge in the predicted OOD samples during inference. Further, to obtain a more reliable set of predicted OOD samples on long-tailed ID data, a novel dual-normalized energy loss is introduced in AdaptOD, which leverages class- and sample-wise normalized energy to enforce a more balanced prediction energy on imbalanced ID samples. This helps avoid bias toward the head samples and learn a substantially better vanilla outlier distribution than existing energy losses during training. It also eliminates the need of manually tuning the sensitive margin hyperparameters in energy losses. Empirical results on three popular benchmarks for OOD detection in LTR show the superior performance of AdaptOD over state-of-the-art methods. Code is available at https://github.com/mala-lab/AdaptOD.
Related papers
- Rethinking Out-of-Distribution Detection on Imbalanced Data Distribution [38.844580833635725]
We present a training-time regularization technique to mitigate the bias and boost imbalanced OOD detectors across architecture designs.
Our method translates into consistent improvements on the representative CIFAR10-LT, CIFAR100-LT, and ImageNet-LT benchmarks.
arXiv Detail & Related papers (2024-07-23T12:28:59Z) - Out-of-Distribution Detection with a Single Unconditional Diffusion Model [54.15132801131365]
Out-of-distribution (OOD) detection is a critical task in machine learning that seeks to identify abnormal samples.
Traditionally, unsupervised methods utilize a deep generative model for OOD detection.
This paper explores whether a single model can perform OOD detection across diverse tasks.
arXiv Detail & Related papers (2024-05-20T08:54:03Z) - Detecting Out-of-Distribution Samples via Conditional Distribution
Entropy with Optimal Transport [20.421338676377587]
We argue that empirical probability distributions that incorporate geometric information from both training samples and test inputs can be highly beneficial for OOD detection.
Within the framework of optimal transport, we propose a novel score function known as the emphconditional distribution entropy to quantify the uncertainty of a test input being an OOD sample.
arXiv Detail & Related papers (2024-01-22T07:07:32Z) - Out-of-Distribution Detection in Long-Tailed Recognition with Calibrated
Outlier Class Learning [24.6581764192229]
Existing out-of-distribution (OOD) methods have shown great success on balanced datasets.
OOD samples are often wrongly classified into head classes and/or tail-class samples are treated as OOD samples.
We introduce a novel outlier class learning (COCL) approach, in which 1) a debiased large margin learning method is introduced in the outlier class learning to distinguish OOD samples from both head and tail classes in the representation space and 2) an outlier-class-aware logit calibration method is defined to enhance the long-tailed classification confidence.
arXiv Detail & Related papers (2023-12-17T11:11:02Z) - EAT: Towards Long-Tailed Out-of-Distribution Detection [55.380390767978554]
This paper addresses the challenging task of long-tailed OOD detection.
The main difficulty lies in distinguishing OOD data from samples belonging to the tail classes.
We propose two simple ideas: (1) Expanding the in-distribution class space by introducing multiple abstention classes, and (2) Augmenting the context-limited tail classes by overlaying images onto the context-rich OOD data.
arXiv Detail & Related papers (2023-12-14T13:47:13Z) - Model-free Test Time Adaptation for Out-Of-Distribution Detection [62.49795078366206]
We propose a Non-Parametric Test Time textbfAdaptation framework for textbfDistribution textbfDetection (abbr)
abbr utilizes online test samples for model adaptation during testing, enhancing adaptability to changing data distributions.
We demonstrate the effectiveness of abbr through comprehensive experiments on multiple OOD detection benchmarks.
arXiv Detail & Related papers (2023-11-28T02:00:47Z) - Partial and Asymmetric Contrastive Learning for Out-of-Distribution
Detection in Long-Tailed Recognition [80.07843757970923]
We show that existing OOD detection methods suffer from significant performance degradation when the training set is long-tail distributed.
We propose Partial and Asymmetric Supervised Contrastive Learning (PASCL), which explicitly encourages the model to distinguish between tail-class in-distribution samples and OOD samples.
Our method outperforms previous state-of-the-art method by $1.29%$, $1.45%$, $0.69%$ anomaly detection false positive rate (FPR) and $3.24%$, $4.06%$, $7.89%$ in-distribution
arXiv Detail & Related papers (2022-07-04T01:53:07Z) - Breaking Down Out-of-Distribution Detection: Many Methods Based on OOD
Training Data Estimate a Combination of the Same Core Quantities [104.02531442035483]
The goal of this paper is to recognize common objectives as well as to identify the implicit scoring functions of different OOD detection methods.
We show that binary discrimination between in- and (different) out-distributions is equivalent to several distinct formulations of the OOD detection problem.
We also show that the confidence loss which is used by Outlier Exposure has an implicit scoring function which differs in a non-trivial fashion from the theoretically optimal scoring function.
arXiv Detail & Related papers (2022-06-20T16:32:49Z) - WOOD: Wasserstein-based Out-of-Distribution Detection [6.163329453024915]
Training data for deep-neural-network-based classifiers are usually assumed to be sampled from the same distribution.
When part of the test samples are drawn from a distribution that is far away from that of the training samples, the trained neural network has a tendency to make high confidence predictions for these OOD samples.
We propose a Wasserstein-based out-of-distribution detection (WOOD) method to overcome these challenges.
arXiv Detail & Related papers (2021-12-13T02:35:15Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
We show that current out-of-distribution (OOD) detection algorithms for neural networks produce unsatisfactory results in a variety of OOD detection scenarios.
This paper studies how such "hard" OOD scenarios can benefit from adjusting the detection method after observing a batch of the test data.
We propose a novel method that uses an artificial labeling scheme for the test data and regularization to obtain ensembles of models that produce contradictory predictions only on the OOD samples in a test batch.
arXiv Detail & Related papers (2020-12-10T16:55:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.