Generative Simulations of The Solar Corona Evolution With Denoising Diffusion : Proof of Concept
- URL: http://arxiv.org/abs/2410.20843v1
- Date: Mon, 28 Oct 2024 08:55:33 GMT
- Title: Generative Simulations of The Solar Corona Evolution With Denoising Diffusion : Proof of Concept
- Authors: Grégoire Francisco, Francesco Pio Ramunno, Manolis K. Georgoulis, João Fernandes, Teresa Barata, Dario Del Moro,
- Abstract summary: The solar magnetized corona is responsible for various manifestations with a space weather impact such as flares, coronal mass ejections (CMEs) and, naturally, the solar wind.
We demonstrate that generative deep learning methods, such as Denoising Probabilistic Models (DDPM), can be successfully applied to simulate future evolutions of the corona.
- Score: 0.282697733014759
- License:
- Abstract: The solar magnetized corona is responsible for various manifestations with a space weather impact, such as flares, coronal mass ejections (CMEs) and, naturally, the solar wind. Modeling the corona's dynamics and evolution is therefore critical for improving our ability to predict space weather In this work, we demonstrate that generative deep learning methods, such as Denoising Diffusion Probabilistic Models (DDPM), can be successfully applied to simulate future evolutions of the corona as observed in Extreme Ultraviolet (EUV) wavelengths. Our model takes a 12-hour video of an Active Region (AR) as input and simulate the potential evolution of the AR over the subsequent 12 hours, with a time-resolution of two hours. We propose a light UNet backbone architecture adapted to our problem by adding 1D temporal convolutions after each classical 2D spatial ones, and spatio-temporal attention in the bottleneck part. The model not only produce visually realistic outputs but also captures the inherent stochasticity of the system's evolution. Notably, the simulations enable the generation of reliable confidence intervals for key predictive metrics such as the EUV peak flux and fluence of the ARs, paving the way for probabilistic and interpretable space weather forecasting. Future studies will focus on shorter forecasting horizons with increased spatial and temporal resolution, aiming at reducing the uncertainty of the simulations and providing practical applications for space weather forecasting. The code used for this study is available at the following link: https://github.com/gfrancisco20/video_diffusion
Related papers
- Multimodal Flare Forecasting with Deep Learning [0.2968738145616401]
We employ deep learning to compare the predictive capabilities of chromospheric and coronal UV and EUV emissions across different wavelengths.
Our findings indicate that individual EUV wavelengths can provide discriminatory power comparable or better to that of line-of-sight magnetograms.
arXiv Detail & Related papers (2024-10-21T15:42:47Z) - A Scalable Real-Time Data Assimilation Framework for Predicting Turbulent Atmosphere Dynamics [8.012940782999975]
We introduce a generic real-time data assimilation framework and demonstrate its end-to-end performance on the Frontier supercomputer.
This framework comprises two primary modules: an ensemble score filter (EnSF) and a vision transformer-based surrogate.
We demonstrate both the strong and weak scaling of our framework up to 1024 GPUs on the Exascale supercomputer, Frontier.
arXiv Detail & Related papers (2024-07-16T20:44:09Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - DiffCast: A Unified Framework via Residual Diffusion for Precipitation Nowcasting [20.657502066923023]
Precipitation nowcasting is an important task to predict the radar echoes sequences based on current observations, which can serve both meteorological science and smart city applications.
Previous studies address the problem either from the perspectives of deterministic modeling or probabilistic modeling.
We propose to decompose and model the chaotic evolutionary precipitation systems from the perspective of global deterministic motion and local variations with residual mechanism.
arXiv Detail & Related papers (2023-12-11T11:26:32Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
Time series forecasting has been a widely explored task of great importance in many applications.
It is common that real-world time series data are recorded in a short time period, which results in a big gap between the deep model and the limited and noisy time series.
We propose to address the time series forecasting problem with generative modeling and propose a bidirectional variational auto-encoder equipped with diffusion, denoise, and disentanglement.
arXiv Detail & Related papers (2023-01-08T12:20:46Z) - PRISM: Probabilistic Real-Time Inference in Spatial World Models [52.878769723544615]
PRISM is a method for real-time filtering in a probabilistic generative model of agent motion and visual perception.
The proposed solution runs at 10Hz real-time and is similarly accurate to state-of-the-art SLAM in small to medium-sized indoor environments.
arXiv Detail & Related papers (2022-12-06T13:59:06Z) - STAU: A SpatioTemporal-Aware Unit for Video Prediction and Beyond [78.129039340528]
We propose a temporal-aware unit (STAU) for video prediction and beyond.
Our STAU can outperform other methods on all tasks in terms of performance and efficiency.
arXiv Detail & Related papers (2022-04-20T13:42:51Z) - Achieving an Accurate Random Process Model for PV Power using Cheap
Data: Leveraging the SDE and Public Weather Reports [0.0]
An accurate SDE model for PV power can be constructed by only using the cheap data from low-resolution public weather reports.
The proposed approach outperforms a selection of state-of-the-art deep learning-based time-series forecast methods.
arXiv Detail & Related papers (2021-11-27T04:34:02Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Latent State Inference in a Spatiotemporal Generative Model [3.7525506486107267]
We focus on temperature and weather processes, including wave propagation dynamics, for which we assume that universal causes apply throughout space and time.
A recently introduced DIsed Stemporal graph graph artificial Neural Architecture (DISTANA) is used and enhanced to learn such processes.
We show that DISTANA, when combined with a retrospective latent state inference principle called active tuning, can reliably derive location-respective hidden causal factors.
arXiv Detail & Related papers (2020-09-21T12:59:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.