On Probabilistic Pullback Metrics for Latent Hyperbolic Manifolds
- URL: http://arxiv.org/abs/2410.20850v3
- Date: Sun, 18 May 2025 17:14:19 GMT
- Title: On Probabilistic Pullback Metrics for Latent Hyperbolic Manifolds
- Authors: Luis Augenstein, Noémie Jaquier, Tamim Asfour, Leonel Rozo,
- Abstract summary: This paper focuses on hyperbolic embeddings, a particularly suitable choice for modeling hierarchical relationships.<n>We propose augmenting the hyperbolic manifold with a pullback metric to account for distortions introduced by the LVM's nonlinear mapping.<n>Our experiments demonstrate that geodesics on the pullback metric not only respect the geometry of the hyperbolic latent space but also align with the underlying data distribution.
- Score: 5.724027955589408
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Probabilistic Latent Variable Models (LVMs) excel at modeling complex, high-dimensional data through lower-dimensional representations. Recent advances show that equipping these latent representations with a Riemannian metric unlocks geometry-aware distances and shortest paths that comply with the underlying data structure. This paper focuses on hyperbolic embeddings, a particularly suitable choice for modeling hierarchical relationships. Previous approaches relying on hyperbolic geodesics for interpolating the latent space often generate paths crossing low-data regions, leading to highly uncertain predictions. Instead, we propose augmenting the hyperbolic manifold with a pullback metric to account for distortions introduced by the LVM's nonlinear mapping and provide a complete development for pullback metrics of Gaussian Process LVMs (GPLVMs). Our experiments demonstrate that geodesics on the pullback metric not only respect the geometry of the hyperbolic latent space but also align with the underlying data distribution, significantly reducing uncertainty in predictions.
Related papers
- Enforcing Latent Euclidean Geometry in Single-Cell VAEs for Manifold Interpolation [79.27003481818413]
We introduce FlatVI, a training framework that regularises the latent manifold of discrete-likelihood variational autoencoders towards Euclidean geometry.<n>By encouraging straight lines in the latent space to approximate geodesics on the decoded single-cell manifold, FlatVI enhances compatibility with downstream approaches.
arXiv Detail & Related papers (2025-07-15T23:08:14Z) - Follow the Energy, Find the Path: Riemannian Metrics from Energy-Based Models [35.5088111343308]
We propose a method for deriving Riemannian metrics directly from pretrained Energy-Based Models.<n>These metrics define spatially varying distances, enabling the computation of geodesics.<n>We show that EBM-derived metrics consistently outperform established baselines.
arXiv Detail & Related papers (2025-05-23T12:18:08Z) - Riemann$^2$: Learning Riemannian Submanifolds from Riemannian Data [12.424539896723603]
Latent variable models are powerful tools for learning low-dimensional manifold from high-dimensional data.<n>This paper generalizes previous work and allows us to handle complex tasks in various domains, including robot motion synthesis and analysis of brain connectomes.
arXiv Detail & Related papers (2025-03-07T16:08:53Z) - Hyperboloid GPLVM for Discovering Continuous Hierarchies via Nonparametric Estimation [41.13597666007784]
Dimensionality reduction (DR) offers a useful representation of complex high-dimensional data.
Recent DR methods focus on hyperbolic geometry to derive a faithful low-dimensional representation of hierarchical data.
This paper presents hGP-LVMs to embed high-dimensional hierarchical data with implicit continuity via nonparametric estimation.
arXiv Detail & Related papers (2024-10-22T05:07:30Z) - Deep Fréchet Regression [4.915744683251151]
We propose a flexible regression model capable of handling high-dimensional predictors without imposing parametric assumptions.
The proposed model outperforms existing methods for non-Euclidean responses.
arXiv Detail & Related papers (2024-07-31T07:54:14Z) - Quasi-Bayes meets Vines [2.3124143670964448]
We propose a different way to extend Quasi-Bayesian prediction to high dimensions through the use of Sklar's theorem.
We show that our proposed Quasi-Bayesian Vine (QB-Vine) is a fully non-parametric density estimator with emphan analytical form.
arXiv Detail & Related papers (2024-06-18T16:31:02Z) - Scaling Riemannian Diffusion Models [68.52820280448991]
We show that our method enables us to scale to high dimensional tasks on nontrivial manifold.
We model QCD densities on $SU(n)$ lattices and contrastively learned embeddings on high dimensional hyperspheres.
arXiv Detail & Related papers (2023-10-30T21:27:53Z) - Implicit Manifold Gaussian Process Regression [49.0787777751317]
Gaussian process regression is widely used to provide well-calibrated uncertainty estimates.
It struggles with high-dimensional data because of the implicit low-dimensional manifold upon which the data actually lies.
In this paper we propose a technique capable of inferring implicit structure directly from data (labeled and unlabeled) in a fully differentiable way.
arXiv Detail & Related papers (2023-10-30T09:52:48Z) - Conformal inference for regression on Riemannian Manifolds [49.7719149179179]
We investigate prediction sets for regression scenarios when the response variable, denoted by $Y$, resides in a manifold, and the covariable, denoted by X, lies in Euclidean space.
We prove the almost sure convergence of the empirical version of these regions on the manifold to their population counterparts.
arXiv Detail & Related papers (2023-10-12T10:56:25Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
We show that a step size agnostic to the curvature of the manifold achieves a curvature-independent and linear last-iterate convergence rate.
To the best of our knowledge, the possibility of curvature-independent rates and/or last-iterate convergence has not been considered before.
arXiv Detail & Related papers (2023-06-29T01:20:44Z) - Implicit Bias of Gradient Descent for Logistic Regression at the Edge of
Stability [69.01076284478151]
In machine learning optimization, gradient descent (GD) often operates at the edge of stability (EoS)
This paper studies the convergence and implicit bias of constant-stepsize GD for logistic regression on linearly separable data in the EoS regime.
arXiv Detail & Related papers (2023-05-19T16:24:47Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - Riemannian Diffusion Schr\"odinger Bridge [56.20669989459281]
We introduce emphRiemannian Diffusion Schr"odinger Bridge to accelerate sampling of diffusion models.
We validate our proposed method on synthetic data and real Earth and climate data.
arXiv Detail & Related papers (2022-07-07T00:35:04Z) - HRCF: Enhancing Collaborative Filtering via Hyperbolic Geometric
Regularization [52.369435664689995]
We introduce a textitHyperbolic Regularization powered Collaborative Filtering (HRCF) and design a geometric-aware hyperbolic regularizer.
Specifically, the proposal boosts optimization procedure via the root alignment and origin-aware penalty.
Our proposal is able to tackle the over-smoothing problem caused by hyperbolic aggregation and also brings the models a better discriminative ability.
arXiv Detail & Related papers (2022-04-18T06:11:44Z) - GELATO: Geometrically Enriched Latent Model for Offline Reinforcement
Learning [54.291331971813364]
offline reinforcement learning approaches can be divided into proximal and uncertainty-aware methods.
In this work, we demonstrate the benefit of combining the two in a latent variational model.
Our proposed metrics measure both the quality of out of distribution samples as well as the discrepancy of examples in the data.
arXiv Detail & Related papers (2021-02-22T19:42:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.