CODES: Benchmarking Coupled ODE Surrogates
- URL: http://arxiv.org/abs/2410.20886v2
- Date: Wed, 20 Nov 2024 16:47:44 GMT
- Title: CODES: Benchmarking Coupled ODE Surrogates
- Authors: Robin Janssen, Immanuel Sulzer, Tobias Buck,
- Abstract summary: CODES is a benchmark for comprehensive evaluation of surrogate architectures for coupled ODE systems.
It emphasizes usability through features such as integrated parallel training, a web-based configuration generator, and pre-implemented baseline models and datasets.
- Score: 0.0
- License:
- Abstract: We introduce CODES, a benchmark for comprehensive evaluation of surrogate architectures for coupled ODE systems. Besides standard metrics like mean squared error (MSE) and inference time, CODES provides insights into surrogate behaviour across multiple dimensions like interpolation, extrapolation, sparse data, uncertainty quantification and gradient correlation. The benchmark emphasizes usability through features such as integrated parallel training, a web-based configuration generator, and pre-implemented baseline models and datasets. Extensive documentation ensures sustainability and provides the foundation for collaborative improvement. By offering a fair and multi-faceted comparison, CODES helps researchers select the most suitable surrogate for their specific dataset and application while deepening our understanding of surrogate learning behaviour.
Related papers
- Binary Code Similarity Detection via Graph Contrastive Learning on Intermediate Representations [52.34030226129628]
Binary Code Similarity Detection (BCSD) plays a crucial role in numerous fields, including vulnerability detection, malware analysis, and code reuse identification.
In this paper, we propose IRBinDiff, which mitigates compilation differences by leveraging LLVM-IR with higher-level semantic abstraction.
Our extensive experiments, conducted under varied compilation settings, demonstrate that IRBinDiff outperforms other leading BCSD methods in both One-to-one comparison and One-to-many search scenarios.
arXiv Detail & Related papers (2024-10-24T09:09:20Z) - LiDAR: Sensing Linear Probing Performance in Joint Embedding SSL
Architectures [24.40012454562582]
LiDAR is a metric designed to measure the quality of representations within Joint embedding architectures.
Our proposed criterion presents a more robust and intuitive means of assessing the quality of representations within JE architectures.
arXiv Detail & Related papers (2023-12-07T02:31:28Z) - DCID: Deep Canonical Information Decomposition [84.59396326810085]
We consider the problem of identifying the signal shared between two one-dimensional target variables.
We propose ICM, an evaluation metric which can be used in the presence of ground-truth labels.
We also propose Deep Canonical Information Decomposition (DCID) - a simple, yet effective approach for learning the shared variables.
arXiv Detail & Related papers (2023-06-27T16:59:06Z) - Disentanglement via Latent Quantization [60.37109712033694]
In this work, we construct an inductive bias towards encoding to and decoding from an organized latent space.
We demonstrate the broad applicability of this approach by adding it to both basic data-re (vanilla autoencoder) and latent-reconstructing (InfoGAN) generative models.
arXiv Detail & Related papers (2023-05-28T06:30:29Z) - Cross-Gradient Aggregation for Decentralized Learning from Non-IID data [34.23789472226752]
Decentralized learning enables a group of collaborative agents to learn models using a distributed dataset without the need for a central parameter server.
We propose Cross-Gradient Aggregation (CGA), a novel decentralized learning algorithm.
We show superior learning performance of CGA over existing state-of-the-art decentralized learning algorithms.
arXiv Detail & Related papers (2021-03-02T21:58:12Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
International Classification of Diseases (ICD) are the de facto codes used globally for clinical coding.
These codes enable healthcare providers to claim reimbursement and facilitate efficient storage and retrieval of diagnostic information.
Our proposed approach enhances the performance of neural models by effectively training word vectors using routine medical data as well as external knowledge from scientific articles.
arXiv Detail & Related papers (2021-02-26T17:49:58Z) - BREEDS: Benchmarks for Subpopulation Shift [98.90314444545204]
We develop a methodology for assessing the robustness of models to subpopulation shift.
We leverage the class structure underlying existing datasets to control the data subpopulations that comprise the training and test distributions.
Applying this methodology to the ImageNet dataset, we create a suite of subpopulation shift benchmarks of varying granularity.
arXiv Detail & Related papers (2020-08-11T17:04:47Z) - Pairwise Supervised Hashing with Bernoulli Variational Auto-Encoder and
Self-Control Gradient Estimator [62.26981903551382]
Variational auto-encoders (VAEs) with binary latent variables provide state-of-the-art performance in terms of precision for document retrieval.
We propose a pairwise loss function with discrete latent VAE to reward within-class similarity and between-class dissimilarity for supervised hashing.
This new semantic hashing framework achieves superior performance compared to the state-of-the-arts.
arXiv Detail & Related papers (2020-05-21T06:11:33Z) - Learning Discrete Structured Representations by Adversarially Maximizing
Mutual Information [39.87273353895564]
We propose learning discrete structured representations from unlabeled data by maximizing the mutual information between a structured latent variable and a target variable.
Our key technical contribution is an adversarial objective that can be used to tractably estimate mutual information assuming only the feasibility of cross entropy calculation.
We apply our model on document hashing and show that it outperforms current best baselines based on discrete and vector quantized variational autoencoders.
arXiv Detail & Related papers (2020-04-08T13:31:53Z) - Asymmetric Correlation Quantization Hashing for Cross-modal Retrieval [11.988383965639954]
Cross-modal hashing methods have attracted extensive attention in similarity retrieval across the heterogeneous modalities.
ACQH is a novel Asymmetric Correlation Quantization Hashing (ACQH) method proposed in this paper.
It learns the projection matrixs of heterogeneous modalities data points for transforming query into a low-dimensional real-valued vector in latent semantic space.
It constructs the stacked compositional quantization embedding in a coarse-to-fine manner for indicating database points by a series of learnt real-valued codeword.
arXiv Detail & Related papers (2020-01-14T04:53:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.