論文の概要: Active Causal Structure Learning with Latent Variables: Towards Learning to Detour in Autonomous Robots
- arxiv url: http://arxiv.org/abs/2410.20894v1
- Date: Mon, 28 Oct 2024 10:21:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:16:37.157788
- Title: Active Causal Structure Learning with Latent Variables: Towards Learning to Detour in Autonomous Robots
- Title(参考訳): 潜伏変数を用いた能動因果構造学習 : 自律型ロボットの学習に向けて
- Authors: Pablo de los Riscos, Fernando Corbacho,
- Abstract要約: 人工知能(AGI)エージェントとロボットは、絶えず変化する環境やタスクに対処できなければならない。
我々は,潜伏変数(ACSLWL)を用いた能動的因果構造学習がAGIエージェントやロボット構築に必要な要素であると主張している。
- 参考スコア(独自算出の注目度): 49.1574468325115
- License:
- Abstract: Artificial General Intelligence (AGI) Agents and Robots must be able to cope with everchanging environments and tasks. They must be able to actively construct new internal causal models of their interactions with the environment when new structural changes take place in the environment. Thus, we claim that active causal structure learning with latent variables (ACSLWL) is a necessary component to build AGI agents and robots. This paper describes how a complex planning and expectation-based detour behavior can be learned by ACSLWL when, unexpectedly, and for the first time, the simulated robot encounters a sort of transparent barrier in its pathway towards its target. ACSWL consists of acting in the environment, discovering new causal relations, constructing new causal models, exploiting the causal models to maximize its expected utility, detecting possible latent variables when unexpected observations occur, and constructing new structures-internal causal models and optimal estimation of the associated parameters, to be able to cope efficiently with the new encountered situations. That is, the agent must be able to construct new causal internal models that transform a previously unexpected and inefficient (sub-optimal) situation, into a predictable situation with an optimal operating plan.
- Abstract(参考訳): 人工知能(AGI)エージェントとロボットは、絶えず変化する環境やタスクに対処できなければならない。
環境に新たな構造変化が発生した場合、環境との相互作用の新たな内部因果モデルの構築を積極的に行う必要がある。
そこで我々は,潜伏変数を用いた能動的因果構造学習(ACSLWL)がAGIエージェントやロボット構築に必要な要素であると主張している。
本稿では、ACSLWLが複雑な計画と予測に基づくデトラル動作を、予想外の、そして初めて、シミュレートされたロボットが目標に向かう経路において、ある種の透明な障壁に遭遇したとき、どのように学習するかを説明する。
ACSWLは、環境内での行動、新しい因果関係の発見、新しい因果関係モデルの構築、予測された有用性を最大化するための因果モデルの利用、予期しない観測時の潜在変数の検出、新しい構造と内部因果関係モデルの構築と関連するパラメータの最適推定によって構成される。
すなわち、エージェントは、予期せぬ非効率(準最適)な状況から、最適な運用計画を伴う予測可能な状況に変換する新しい因果内モデルを構築することができる必要がある。
関連論文リスト
- Causal Reinforcement Learning for Optimisation of Robot Dynamics in Unknown Environments [4.494898338391223]
本研究は,ロボット操作の高度化に向けた新しい因果強化学習手法を導入する。
提案する機械学習アーキテクチャにより,ロボットは物体の視覚的特徴間の因果関係を学習することができる。
論文 参考訳(メタデータ) (2024-09-20T11:40:51Z) - Foundation Models for Autonomous Robots in Unstructured Environments [15.517532442044962]
この研究は、ロボットと非構造環境の2つの分野における基礎モデルの応用を体系的にレビューした。
LLMの言語能力は、人間とロボットの相互作用の知覚を改善するために、他の特徴よりも利用されてきた。
LLMの使用は、プロジェクトの管理と建設における安全性、災害管理における自然災害検出により多くの応用を実証した。
論文 参考訳(メタデータ) (2024-07-19T13:26:52Z) - Variable-Agnostic Causal Exploration for Reinforcement Learning [56.52768265734155]
強化学習のための新しいフレームワークVACERL(Variable-Agnostic Causal Exploration for Reinforcement Learning)を導入する。
本手法は,注目機構を用いて,重要変数に関連する重要な観測行動ステップを自動的に同定する。
これらのステップを接続する因果グラフを構築し、エージェントをタスク完了に対する因果的影響の大きい観察-作用ペアへと導く。
論文 参考訳(メタデータ) (2024-07-17T09:45:27Z) - HAZARD Challenge: Embodied Decision Making in Dynamically Changing
Environments [93.94020724735199]
HAZARDは、火災、洪水、風などの3つの予期せぬ災害シナリオで構成されている。
このベンチマークにより、さまざまなパイプラインで自律エージェントの意思決定能力を評価することができる。
論文 参考訳(メタデータ) (2024-01-23T18:59:43Z) - Neural-Logic Human-Object Interaction Detection [67.4993347702353]
本稿では,ニューラルロジック推論を利用した新しいHOI検出器であるL OGIC HOIと,実体間の相互作用を推測するTransformerを提案する。
具体的には,バニラトランスフォーマーの自己保持機構を改変し,人間,行動,対象>三重項を推論し,新たな相互作用を構成する。
我々はこれらの2つの特性を一階述語論理で定式化し、それらを連続空間に基底にして、我々のアプローチの学習過程を制約し、性能とゼロショットの一般化能力を向上させる。
論文 参考訳(メタデータ) (2023-11-16T11:47:53Z) - Build generally reusable agent-environment interaction models [28.577502598559988]
本稿では,モデルの事前学習の問題に対処し,ダウンストリームタスク学習のためのバックボーンを一般に再利用する。
本稿では,様々なタスクをカバーしたエージェントの膨大な経験から,ドメイン不変な後継特徴を学習してエージェント環境相互作用モデルを構築し,それらを行動プロトタイプに識別する手法を提案する。
本研究では,事前学習した組立構造に基づく下流タスク学習が課題目標,環境力学,センサのモダリティの未確認変化を処理できる予備的な結果を提供する。
論文 参考訳(メタデータ) (2022-11-13T07:33:14Z) - REPTILE: A Proactive Real-Time Deep Reinforcement Learning Self-adaptive
Framework [0.6335848702857039]
動作環境の変化に応じて動作を適応できるソフトウェアシステムの開発を支援するための一般的なフレームワークが提案されている。
提案されたアプローチはREPTILEと呼ばれ、完全にプロアクティブな方法で動作し、イベントに反応するためにDeep Reinforcement Learningベースのエージェントに依存する。
本フレームワークでは、コンテキスト/環境に関するものと、物理的なアーキテクチャそのものに関するものとの2つのタイプのノベルティを考慮に入れている。
このフレームワークは、その発生前にこれらの新規性を予測し、環境の時間変化モデルを抽出し、適切なマルコフ決定プロセスを使用してリアルタイム設定に対処する。
論文 参考訳(メタデータ) (2022-03-28T12:38:08Z) - Modelling Behaviour Change using Cognitive Agent Simulations [0.0]
本稿では, シミュレーションエージェントに選択された行動変化理論を適用するために, プログレッシブ・イン・プログレッシブ・リサーチを提案する。
この研究は、不適切な状況下での自己決定的目標達成に必要な複雑なエージェントアーキテクチャに焦点を当てている。
論文 参考訳(メタデータ) (2021-10-16T19:19:08Z) - GEM: Group Enhanced Model for Learning Dynamical Control Systems [78.56159072162103]
サンプルベースの学習が可能な効果的なダイナミクスモデルを構築します。
リー代数ベクトル空間上のダイナミクスの学習は、直接状態遷移モデルを学ぶよりも効果的であることを示す。
この研究は、ダイナミクスの学習とリー群の性質の関連性を明らかにし、新たな研究の方向への扉を開く。
論文 参考訳(メタデータ) (2021-04-07T01:08:18Z) - CausalWorld: A Robotic Manipulation Benchmark for Causal Structure and
Transfer Learning [138.40338621974954]
CausalWorldは、ロボット操作環境における因果構造と伝達学習のベンチマークである。
タスクは、ブロックのセットから3D形状を構築することで構成される。
論文 参考訳(メタデータ) (2020-10-08T23:01:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。