Diff-Instruct*: Towards Human-Preferred One-step Text-to-image Generative Models
- URL: http://arxiv.org/abs/2410.20898v1
- Date: Mon, 28 Oct 2024 10:26:19 GMT
- Title: Diff-Instruct*: Towards Human-Preferred One-step Text-to-image Generative Models
- Authors: Weijian Luo, Colin Zhang, Debing Zhang, Zhengyang Geng,
- Abstract summary: We introduce the Diff-Instruct*(DI*), a data-free approach for building one-step text-to-image generative models.
With Stable Diffusion V1.5 as the reference diffusion model, DI* outperforms emphall previously leading models by a large margin.
- Score: 8.352666876052616
- License:
- Abstract: In this paper, we introduce the Diff-Instruct*(DI*), a data-free approach for building one-step text-to-image generative models that align with human preference while maintaining the ability to generate highly realistic images. We frame human preference alignment as online reinforcement learning using human feedback (RLHF), where the goal is to maximize the reward function while regularizing the generator distribution to remain close to a reference diffusion process. Unlike traditional RLHF approaches, which rely on the KL divergence for regularization, we introduce a novel score-based divergence regularization, which leads to significantly better performances. Although the direct calculation of this divergence remains intractable, we demonstrate that we can efficiently compute its \emph{gradient} by deriving an equivalent yet tractable loss function. Remarkably, with Stable Diffusion V1.5 as the reference diffusion model, DI* outperforms \emph{all} previously leading models by a large margin. When using the 0.6B PixelArt-$\alpha$ model as the reference diffusion, DI* achieves a new record Aesthetic Score of 6.30 and an Image Reward of 1.31 with only a single generation step, almost doubling the scores of the rest of the models with similar sizes. It also achieves an HPSv2 score of 28.70, establishing a new state-of-the-art benchmark. We also observe that DI* can improve the layout and enrich the colors of generated images.
Related papers
- Diff-Instruct++: Training One-step Text-to-image Generator Model to Align with Human Preferences [0.0]
We introduce Diff-Instruct++ (DI++), the first, fast-converging and image data-free human preference alignment method for one-step text-to-image generators.
In the experiment sections, we align both UNet-based and DiT-based one-step generators using DI++, which use the Stable Diffusion 1.5 and the PixelArt-$alpha$ as the reference diffusion processes.
The resulting DiT-based one-step text-to-image model achieves a strong Aesthetic Score of 6.19 and an Image Reward of 1.24 on the validation prompt dataset
arXiv Detail & Related papers (2024-10-24T16:17:18Z) - Tuning Timestep-Distilled Diffusion Model Using Pairwise Sample Optimization [97.35427957922714]
We present an algorithm named pairwise sample optimization (PSO), which enables the direct fine-tuning of an arbitrary timestep-distilled diffusion model.
PSO introduces additional reference images sampled from the current time-step distilled model, and increases the relative likelihood margin between the training images and reference images.
We show that PSO can directly adapt distilled models to human-preferred generation with both offline and online-generated pairwise preference image data.
arXiv Detail & Related papers (2024-10-04T07:05:16Z) - Derivative-Free Guidance in Continuous and Discrete Diffusion Models with Soft Value-Based Decoding [84.3224556294803]
Diffusion models excel at capturing the natural design spaces of images, molecules, DNA, RNA, and protein sequences.
We aim to optimize downstream reward functions while preserving the naturalness of these design spaces.
Our algorithm integrates soft value functions, which looks ahead to how intermediate noisy states lead to high rewards in the future.
arXiv Detail & Related papers (2024-08-15T16:47:59Z) - Plug-and-Play Diffusion Distillation [14.359953671470242]
We propose a new distillation approach for guided diffusion models.
An external lightweight guide model is trained while the original text-to-image model remains frozen.
We show that our method reduces the inference of classifier-free guided latent-space diffusion models by almost half.
arXiv Detail & Related papers (2024-06-04T04:22:47Z) - Score-Guided Diffusion for 3D Human Recovery [10.562998991986102]
We present Score-Guided Human Mesh Recovery (ScoreHMR), an approach for solving inverse problems for 3D human pose and shape reconstruction.
ScoreHMR mimics model fitting approaches, but alignment with the image observation is achieved through score guidance in the latent space of a diffusion model.
We evaluate our approach on three settings/applications: (i) single-frame model fitting; (ii) reconstruction from multiple uncalibrated views; (iii) reconstructing humans in video sequences.
arXiv Detail & Related papers (2024-03-14T17:56:14Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
Fine-tuning Diffusion Models remains an underexplored frontier in generative artificial intelligence (GenAI)
In this paper, we introduce an innovative technique called self-play fine-tuning for diffusion models (SPIN-Diffusion)
Our approach offers an alternative to conventional supervised fine-tuning and RL strategies, significantly improving both model performance and alignment.
arXiv Detail & Related papers (2024-02-15T18:59:18Z) - One-step Diffusion with Distribution Matching Distillation [54.723565605974294]
We introduce Distribution Matching Distillation (DMD), a procedure to transform a diffusion model into a one-step image generator.
We enforce the one-step image generator match the diffusion model at distribution level, by minimizing an approximate KL divergence.
Our method outperforms all published few-step diffusion approaches, reaching 2.62 FID on ImageNet 64x64 and 11.49 FID on zero-shot COCO-30k.
arXiv Detail & Related papers (2023-11-30T18:59:20Z) - On Distillation of Guided Diffusion Models [94.95228078141626]
We propose an approach to distilling classifier-free guided diffusion models into models that are fast to sample from.
For standard diffusion models trained on the pixelspace, our approach is able to generate images visually comparable to that of the original model.
For diffusion models trained on the latent-space (e.g., Stable Diffusion), our approach is able to generate high-fidelity images using as few as 1 to 4 denoising steps.
arXiv Detail & Related papers (2022-10-06T18:03:56Z) - Score-Based Generative Modeling through Stochastic Differential
Equations [114.39209003111723]
We present a differential equation that transforms a complex data distribution to a known prior distribution by injecting noise.
A corresponding reverse-time SDE transforms the prior distribution back into the data distribution by slowly removing the noise.
By leveraging advances in score-based generative modeling, we can accurately estimate these scores with neural networks.
We demonstrate high fidelity generation of 1024 x 1024 images for the first time from a score-based generative model.
arXiv Detail & Related papers (2020-11-26T19:39:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.