When Worse is Better: Navigating the compression-generation tradeoff in visual tokenization
- URL: http://arxiv.org/abs/2412.16326v1
- Date: Fri, 20 Dec 2024 20:32:02 GMT
- Title: When Worse is Better: Navigating the compression-generation tradeoff in visual tokenization
- Authors: Vivek Ramanujan, Kushal Tirumala, Armen Aghajanyan, Luke Zettlemoyer, Ali Farhadi,
- Abstract summary: We introduce Causally Regularized Tokenization (CRT), which uses knowledge of the stage 2 generation modeling procedure to embed useful inductive biases in stage 1 latents.
CRT makes stage 1 reconstruction performance worse, but makes stage 2 generation performance better by making the tokens easier to model.
We match state-of-the-art discrete autoregressive ImageNet generation (2.18 FID) with less than half the tokens per image.
- Score: 92.17160980120404
- License:
- Abstract: Current image generation methods, such as latent diffusion and discrete token-based generation, depend on a two-stage training approach. In stage 1, an auto-encoder is trained to compress an image into a latent space; in stage 2, a generative model is trained to learn a distribution over that latent space. Most work focuses on maximizing stage 1 performance independent of stage 2, assuming better reconstruction always leads to better generation. However, we show this is not strictly true. Smaller stage 2 models can benefit from more compressed stage 1 latents even if reconstruction performance worsens, showing a fundamental trade-off between compression and generation modeling capacity. To better optimize this trade-off, we introduce Causally Regularized Tokenization (CRT), which uses knowledge of the stage 2 generation modeling procedure to embed useful inductive biases in stage 1 latents. This regularization makes stage 1 reconstruction performance worse, but makes stage 2 generation performance better by making the tokens easier to model: we are able to improve compute efficiency 2-3$\times$ over baseline and match state-of-the-art discrete autoregressive ImageNet generation (2.18 FID) with less than half the tokens per image (256 vs. 576) and a fourth the total model parameters (775M vs. 3.1B) as the previous SOTA (LlamaGen).
Related papers
- Reconstruction vs. Generation: Taming Optimization Dilemma in Latent Diffusion Models [34.15905637499148]
We propose aligning the latent space with pre-trained vision foundation models when training the visual tokenizers.
Our proposed VA-VAE significantly expands the reconstruction-generation frontier of latent diffusion models.
We build an enhanced DiT baseline with improved training strategies and architecture designs, termed LightningDiT.
arXiv Detail & Related papers (2025-01-02T18:59:40Z) - E-CAR: Efficient Continuous Autoregressive Image Generation via Multistage Modeling [17.62612090885471]
ECAR (Efficient Continuous Auto-Regressive Image Generation via Multistage Modeling) is presented.
It operates by generating tokens at increasing resolutions while simultaneously denoising the image at each stage.
ECAR achieves comparable image quality to DiT Peebles & Xie [2023] while requiring 10$times$ FLOPs reduction and 5$times$ speedup to generate a 256$times $256 image.
arXiv Detail & Related papers (2024-12-18T18:59:53Z) - Diff-Instruct*: Towards Human-Preferred One-step Text-to-image Generative Models [8.352666876052616]
We introduce Diff-Instruct* (DI*), an image data-free approach for building one-step text-to-image generative models.
We frame human preference alignment as online reinforcement learning using human feedback.
Unlike traditional RLHF approaches, which rely on the KL divergence for regularization, we introduce a novel score-based divergence regularization.
arXiv Detail & Related papers (2024-10-28T10:26:19Z) - Stabilize the Latent Space for Image Autoregressive Modeling: A Unified Perspective [52.778766190479374]
Latent-based image generative models have achieved notable success in image generation tasks.
Despite sharing the same latent space, autoregressive models significantly lag behind LDMs and MIMs in image generation.
We propose a simple but effective discrete image tokenizer to stabilize the latent space for image generative modeling.
arXiv Detail & Related papers (2024-10-16T12:13:17Z) - LinFusion: 1 GPU, 1 Minute, 16K Image [71.44735417472043]
We introduce a low-rank approximation of a wide spectrum of popular linear token mixers.
We find that the distilled model, termed LinFusion, achieves performance on par with or superior to the original SD.
Experiments on SD-v1.5, SD-v2.1, and SD-XL demonstrate that LinFusion enables satisfactory and efficient zero-shot cross-resolution generation.
arXiv Detail & Related papers (2024-09-03T17:54:39Z) - Identifying and Solving Conditional Image Leakage in Image-to-Video Diffusion Model [31.70050311326183]
Diffusion models tend to generate videos with less motion than expected.
We address this issue from both inference and training aspects.
Our methods outperform baselines by producing higher motion scores with lower errors.
arXiv Detail & Related papers (2024-06-22T04:56:16Z) - An Image is Worth 32 Tokens for Reconstruction and Generation [54.24414696392026]
Transformer-based 1-Dimensional Tokenizer (TiTok) is an innovative approach that tokenizes images into 1D latent sequences.
TiTok achieves competitive performance to state-of-the-art approaches.
Our best-performing variant can significantly surpasses DiT-XL/2 (gFID 2.13 vs. 3.04) while still generating high-quality samples 74x faster.
arXiv Detail & Related papers (2024-06-11T17:59:56Z) - You Only Sample Once: Taming One-Step Text-to-Image Synthesis by Self-Cooperative Diffusion GANs [13.133574069588896]
YOSO is a novel generative model designed for rapid, scalable, and high-fidelity one-step image synthesis with high training stability and mode coverage.
We show that our method can serve as a one-step generation model training from scratch with competitive performance.
In particular, we show that the YOSO-PixArt-$alpha$ can generate images in one step trained on 512 resolution, with the capability of adapting to 1024 resolution without extra explicit training, requiring only 10 A800 days for fine-tuning.
arXiv Detail & Related papers (2024-03-19T17:34:27Z) - A-SDM: Accelerating Stable Diffusion through Redundancy Removal and
Performance Optimization [54.113083217869516]
In this work, we first explore the computational redundancy part of the network.
We then prune the redundancy blocks of the model and maintain the network performance.
Thirdly, we propose a global-regional interactive (GRI) attention to speed up the computationally intensive attention part.
arXiv Detail & Related papers (2023-12-24T15:37:47Z) - On Distillation of Guided Diffusion Models [94.95228078141626]
We propose an approach to distilling classifier-free guided diffusion models into models that are fast to sample from.
For standard diffusion models trained on the pixelspace, our approach is able to generate images visually comparable to that of the original model.
For diffusion models trained on the latent-space (e.g., Stable Diffusion), our approach is able to generate high-fidelity images using as few as 1 to 4 denoising steps.
arXiv Detail & Related papers (2022-10-06T18:03:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.