Neuro-symbolic Learning Yielding Logical Constraints
- URL: http://arxiv.org/abs/2410.20957v1
- Date: Mon, 28 Oct 2024 12:18:25 GMT
- Title: Neuro-symbolic Learning Yielding Logical Constraints
- Authors: Zenan Li, Yunpeng Huang, Zhaoyu Li, Yuan Yao, Jingwei Xu, Taolue Chen, Xiaoxing Ma, Jian Lu,
- Abstract summary: end-to-end learning of neuro-symbolic systems is still an unsolved challenge.
We propose a framework that fuses the network, symbol grounding, and logical constraint synthesisto-end learning process.
- Score: 22.649543443988712
- License:
- Abstract: Neuro-symbolic systems combine the abilities of neural perception and logical reasoning. However, end-to-end learning of neuro-symbolic systems is still an unsolved challenge. This paper proposes a natural framework that fuses neural network training, symbol grounding, and logical constraint synthesis into a coherent and efficient end-to-end learning process. The capability of this framework comes from the improved interactions between the neural and the symbolic parts of the system in both the training and inference stages. Technically, to bridge the gap between the continuous neural network and the discrete logical constraint, we introduce a difference-of-convex programming technique to relax the logical constraints while maintaining their precision. We also employ cardinality constraints as the language for logical constraint learning and incorporate a trust region method to avoid the degeneracy of logical constraint in learning. Both theoretical analyses and empirical evaluations substantiate the effectiveness of the proposed framework.
Related papers
- Semantic Objective Functions: A distribution-aware method for adding logical constraints in deep learning [4.854297874710511]
Constrained Learning and Knowledge Distillation techniques have shown promising results.
We propose a loss-based method that embeds knowledge-enforces logical constraints into a machine learning model.
We evaluate our method on a variety of learning tasks, including classification tasks with logic constraints.
arXiv Detail & Related papers (2024-05-03T19:21:47Z) - Learning with Logical Constraints but without Shortcut Satisfaction [23.219364371311084]
We present a new framework for learning with logical constraints.
Specifically, we address the shortcut satisfaction issue by introducing dual variables for logical connectives.
We propose a variational framework where the encoded logical constraint is expressed as a distributional loss.
arXiv Detail & Related papers (2024-03-01T07:17:20Z) - NeuralFastLAS: Fast Logic-Based Learning from Raw Data [54.938128496934695]
Symbolic rule learners generate interpretable solutions, however they require the input to be encoded symbolically.
Neuro-symbolic approaches overcome this issue by mapping raw data to latent symbolic concepts using a neural network.
We introduce NeuralFastLAS, a scalable and fast end-to-end approach that trains a neural network jointly with a symbolic learner.
arXiv Detail & Related papers (2023-10-08T12:33:42Z) - LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEG is a holistic visual semantic that integrates neural inductive learning and logic reasoning with both rich data and symbolic knowledge.
During fuzzy logic-based continuous relaxation, logical formulae are grounded onto data and neural computational graphs, hence enabling logic-induced network training.
These designs together make LOGICSEG a general and compact neural-logic machine that is readily integrated into existing segmentation models.
arXiv Detail & Related papers (2023-09-24T05:43:19Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
We propose a general bi-level probabilistic graphical reasoning framework called GBPGR.
In GBPGR, the results of symbolic reasoning are utilized to refine and correct the predictions made by the deep learning models.
Our approach achieves high performance and exhibits effective generalization in both transductive and inductive tasks.
arXiv Detail & Related papers (2023-09-16T09:15:37Z) - Logic-induced Diagnostic Reasoning for Semi-supervised Semantic
Segmentation [85.12429517510311]
LogicDiag is a neural-logic semi-supervised learning framework for semantic segmentation.
Our key insight is that conflicts within pseudo labels, identified through symbolic knowledge, can serve as strong yet commonly ignored learning signals.
We showcase the practical application of LogicDiag in the data-hungry segmentation scenario, where we formalize the structured abstraction of semantic concepts as a set of logic rules.
arXiv Detail & Related papers (2023-08-24T06:50:07Z) - Injecting Logical Constraints into Neural Networks via Straight-Through
Estimators [5.6613898352023515]
Injecting discrete logical constraints into neural network learning is one of the main challenges in neuro-symbolic AI.
We find that a straight-through-estimator, a method introduced to train binary neural networks, could effectively be applied to incorporate logical constraints into neural network learning.
arXiv Detail & Related papers (2023-07-10T05:12:05Z) - Extensions to Generalized Annotated Logic and an Equivalent Neural
Architecture [4.855957436171202]
We propose a list of desirable criteria for neuro symbolic systems and examine how some of the existing approaches address these criteria.
We then propose an extension to annotated generalized logic that allows for the creation of an equivalent neural architecture.
Unlike previous approaches that rely on continuous optimization for the training process, our framework is designed as a binarized neural network that uses discrete optimization.
arXiv Detail & Related papers (2023-02-23T17:39:46Z) - Reinforcement Learning with External Knowledge by using Logical Neural
Networks [67.46162586940905]
A recent neuro-symbolic framework called the Logical Neural Networks (LNNs) can simultaneously provide key-properties of both neural networks and symbolic logic.
We propose an integrated method that enables model-free reinforcement learning from external knowledge sources.
arXiv Detail & Related papers (2021-03-03T12:34:59Z) - Logical Neural Networks [51.46602187496816]
We propose a novel framework seamlessly providing key properties of both neural nets (learning) and symbolic logic (knowledge and reasoning)
Every neuron has a meaning as a component of a formula in a weighted real-valued logic, yielding a highly intepretable disentangled representation.
Inference is omni rather than focused on predefined target variables, and corresponds to logical reasoning.
arXiv Detail & Related papers (2020-06-23T16:55:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.