論文の概要: Informed Deep Abstaining Classifier: Investigating noise-robust training for diagnostic decision support systems
- arxiv url: http://arxiv.org/abs/2410.21014v1
- Date: Mon, 28 Oct 2024 13:36:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:17:08.788084
- Title: Informed Deep Abstaining Classifier: Investigating noise-robust training for diagnostic decision support systems
- Title(参考訳): Informed Deep Abstaining Classifier:診断支援システムにおけるノイズ・ロバスト訓練の検討
- Authors: Helen Schneider, Sebastian Nowak, Aditya Parikh, Yannik C. Layer, Maike Theis, Wolfgang Block, Alois M. Sprinkart, Ulrike Attenberger, Rafet Sifa,
- Abstract要約: ディープラーニングは、画像に基づく診断決定支援システムの最適化に使用することができる。
Informed Deep Abstaining (IDAC) システムは、トレーニング中にノイズレベルの推定を組み込むことで、ノイズロスのDeep Abstaining (DAC) 損失を増大させる。
これらの知見は、テキストベースのトランスフォーマーを用いて、大学病院ボンの臨床システムからラベルを抽出した、社内ノイズデータセットで再現される。
- 参考スコア(独自算出の注目度): 0.7497462432118391
- License:
- Abstract: Image-based diagnostic decision support systems (DDSS) utilizing deep learning have the potential to optimize clinical workflows. However, developing DDSS requires extensive datasets with expert annotations and is therefore costly. Leveraging report contents from radiological data bases with Natural Language Processing to annotate the corresponding image data promises to replace labor-intensive manual annotation. As mining "real world" databases can introduce label noise, noise-robust training losses are of great interest. However, current noise-robust losses do not consider noise estimations that can for example be derived based on the performance of the automatic label generator used. In this study, we expand the noise-robust Deep Abstaining Classifier (DAC) loss to an Informed Deep Abstaining Classifier (IDAC) loss by incorporating noise level estimations during training. Our findings demonstrate that IDAC enhances the noise robustness compared to DAC and several state-of-the-art loss functions. The results are obtained on various simulated noise levels using a public chest X-ray data set. These findings are reproduced on an in-house noisy data set, where labels were extracted from the clinical systems of the University Hospital Bonn by a text-based transformer. The IDAC can therefore be a valuable tool for researchers, companies or clinics aiming to develop accurate and reliable DDSS from routine clinical data.
- Abstract(参考訳): 深層学習を利用した画像診断意思決定支援システム(DDSS)は、臨床ワークフローを最適化する可能性がある。
しかし、DDSSの開発には専門家のアノテーションによる広範なデータセットが必要であるため、コストがかかる。
作業集約的な手動アノテーションを置き換えることを約束する、対応する画像データに注釈を付けるために、Natural Language Processingを使って、放射線学的データベースからのレポートコンテンツを活用する。
実世界」データベースのマイニングはラベルノイズを導入できるため、ノイズロストトレーニングの損失は大きな関心事である。
しかし、現在のノイズ・ロバスト損失は、例えば、使用する自動ラベル生成器の性能に基づいて導出できるノイズ推定を考慮していない。
本研究では,ノイズレベル推定を取り入れたインフォームド・ディープ・アセスメント・クラシファイア(IDAC)の損失に対して,DACの損失を拡大する。
以上の結果より,IDACはDACやいくつかの最先端の損失関数と比較してノイズの頑健性を高めることが示唆された。
その結果,公共胸部X線データセットを用いて,様々な騒音レベルから得られた。
これらの知見は、テキストベースのトランスフォーマーを用いて、大学病院ボンの臨床システムからラベルを抽出した、社内ノイズデータセットで再現される。
したがって、IDACは、通常の臨床データから正確で信頼性の高いDDSSを開発することを目的とした、研究者、企業、クリニックにとって貴重なツールとなる。
関連論文リスト
- SSP-RACL: Classification of Noisy Fundus Images with Self-Supervised Pretraining and Robust Adaptive Credal Loss [3.8739860035485143]
基礎画像分類はコンピュータの診断タスクにおいて重要であるが、ラベルノイズはディープニューラルネットワークの性能を著しく損なう。
本稿では,ロバスト適応クレダルロス (SSP-RACL) を用いた自己監督型事前訓練(Self-Supervised Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-09-25T02:41:58Z) - Training Gradient Boosted Decision Trees on Tabular Data Containing Label Noise for Classification Tasks [1.261491746208123]
本研究の目的は,ラベルノイズが勾配ブースト決定木に及ぼす影響とそれらの効果を緩和する方法を検討することである。
提案手法は,成人のデータセットに対して最先端のノイズ検出性能を示し,成人および乳癌のデータセットに対して最も高い分類精度とリコールを実現する。
論文 参考訳(メタデータ) (2024-09-13T09:09:24Z) - BTS: Bridging Text and Sound Modalities for Metadata-Aided Respiratory Sound Classification [0.0]
音声サンプルのメタデータから派生した自由テキスト記述を用いて,事前学習したテキスト・オーディオ・マルチモーダルモデルを微調整する。
提案手法は,ICBHIデータセットの最先端性能を達成し,先行した最良値の1.17%を突破した。
論文 参考訳(メタデータ) (2024-06-10T20:49:54Z) - SoftPatch: Unsupervised Anomaly Detection with Noisy Data [67.38948127630644]
本稿では,画像センサ異常検出におけるラベルレベルのノイズを初めて考察する。
本稿では,メモリベースの非教師付きAD手法であるSoftPatchを提案する。
既存の手法と比較して、SoftPatchは通常のデータの強力なモデリング能力を維持し、コアセットにおける過信問題を軽減する。
論文 参考訳(メタデータ) (2024-03-21T08:49:34Z) - Learning with Noisy Foundation Models [95.50968225050012]
本論文は、事前学習データセットにおけるノイズの性質を包括的に理解し分析する最初の研究である。
雑音の悪影響を緩和し、一般化を改善するため、特徴空間に適応するチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2024-03-11T16:22:41Z) - Sample selection with noise rate estimation in noise learning of medical image analysis [3.9934250802854376]
本稿では,ノイズの多いデータセットでトレーニングされた場合のニューラルネットワークの性能を向上させる新しいサンプル選択手法を提案する。
本手法では,線形回帰を用いて損失値の分布を解析することにより,データセットの雑音率を推定する。
モデルのノイズ堅牢性をさらに高めるために,スパース正規化を採用している。
論文 参考訳(メタデータ) (2023-12-23T11:57:21Z) - Improving the Robustness of Summarization Models by Detecting and
Removing Input Noise [50.27105057899601]
本研究では,様々な種類の入力ノイズから,様々なデータセットやモデルサイズに対する性能損失を定量化する大規模な実験的検討を行った。
本稿では,モデル推論中の入力中のそのようなノイズを検出し,除去するための軽量な手法を提案する。
論文 参考訳(メタデータ) (2022-12-20T00:33:11Z) - Treatment Learning Causal Transformer for Noisy Image Classification [62.639851972495094]
本研究では,この2値情報「ノイズの存在」を画像分類タスクに組み込んで予測精度を向上させる。
因果的変動推定から動機付け,雑音画像分類のための頑健な特徴表現を潜在生成モデルを用いて推定するトランスフォーマーに基づくアーキテクチャを提案する。
また、パフォーマンスベンチマークのための幅広いノイズ要素を取り入れた、新しいノイズの多い画像データセットも作成する。
論文 参考訳(メタデータ) (2022-03-29T13:07:53Z) - Hard Sample Aware Noise Robust Learning for Histopathology Image
Classification [4.75542005200538]
病理組織像分類のための新しいハードサンプル認識型ノイズロバスト学習法を提案する。
本研究は, 難燃性難燃性試料と難燃性試料とを識別するため, 簡易・難燃性検出モデルを構築した。
本稿では,雑音抑圧・高強度化(NSHE)方式を提案する。
論文 参考訳(メタデータ) (2021-12-05T11:07:55Z) - Bridging the Gap Between Clean Data Training and Real-World Inference
for Spoken Language Understanding [76.89426311082927]
既存のモデルはクリーンデータに基づいてトレーニングされ、クリーンデータトレーニングと現実世界の推論の間にtextitgapが発生する。
本稿では,良質なサンプルと低品質のサンプルの両方が類似ベクトル空間に埋め込まれた領域適応法を提案する。
広く使用されているデータセット、スニップス、および大規模な社内データセット(1000万のトレーニング例)に関する実験では、この方法は実世界の(騒々しい)コーパスのベースラインモデルを上回るだけでなく、堅牢性、すなわち、騒々しい環境下で高品質の結果を生み出すことを実証しています。
論文 参考訳(メタデータ) (2021-04-13T17:54:33Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
植物病は食料安全保障と作物生産に対する主要な脅威の1つである。
1つの一般的なアプローチは、葉画像分類タスクとしてこの問題を変換し、強力な畳み込みニューラルネットワーク(CNN)によって対処できる。
本稿では,正規化メタ学習モジュールを共通CNNパラダイムに組み込んだ新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T09:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。