Informed Deep Abstaining Classifier: Investigating noise-robust training for diagnostic decision support systems
- URL: http://arxiv.org/abs/2410.21014v1
- Date: Mon, 28 Oct 2024 13:36:57 GMT
- Title: Informed Deep Abstaining Classifier: Investigating noise-robust training for diagnostic decision support systems
- Authors: Helen Schneider, Sebastian Nowak, Aditya Parikh, Yannik C. Layer, Maike Theis, Wolfgang Block, Alois M. Sprinkart, Ulrike Attenberger, Rafet Sifa,
- Abstract summary: Deep learning can be used to optimize image-based diagnostic decision support systems.
The Informed Deep Abstaining (IDAC) system enhances the noise-robust Deep Abstaining (DAC) loss by incorporating noise level estimations during training.
These findings are reproduced on an in-house noisy data set, where labels were extracted from the clinical systems of the University Hospital Bonn by a text-based transformer.
- Score: 0.7497462432118391
- License:
- Abstract: Image-based diagnostic decision support systems (DDSS) utilizing deep learning have the potential to optimize clinical workflows. However, developing DDSS requires extensive datasets with expert annotations and is therefore costly. Leveraging report contents from radiological data bases with Natural Language Processing to annotate the corresponding image data promises to replace labor-intensive manual annotation. As mining "real world" databases can introduce label noise, noise-robust training losses are of great interest. However, current noise-robust losses do not consider noise estimations that can for example be derived based on the performance of the automatic label generator used. In this study, we expand the noise-robust Deep Abstaining Classifier (DAC) loss to an Informed Deep Abstaining Classifier (IDAC) loss by incorporating noise level estimations during training. Our findings demonstrate that IDAC enhances the noise robustness compared to DAC and several state-of-the-art loss functions. The results are obtained on various simulated noise levels using a public chest X-ray data set. These findings are reproduced on an in-house noisy data set, where labels were extracted from the clinical systems of the University Hospital Bonn by a text-based transformer. The IDAC can therefore be a valuable tool for researchers, companies or clinics aiming to develop accurate and reliable DDSS from routine clinical data.
Related papers
- SSP-RACL: Classification of Noisy Fundus Images with Self-Supervised Pretraining and Robust Adaptive Credal Loss [3.8739860035485143]
Fundus image classification is crucial in the computer aided diagnosis tasks, but label noise significantly impairs the performance of deep neural networks.
We propose a robust framework, Self-Supervised Pre-training with Robust Adaptive Credal Loss (SSP-RACL), for handling label noise in fundus image datasets.
arXiv Detail & Related papers (2024-09-25T02:41:58Z) - Training Gradient Boosted Decision Trees on Tabular Data Containing Label Noise for Classification Tasks [1.261491746208123]
This study aims to investigate the effects of label noise on gradient-boosted decision trees and methods to mitigate those effects.
The implemented methods demonstrate state-of-the-art noise detection performance on the Adult dataset and achieve the highest classification precision and recall on the Adult and Breast Cancer datasets.
arXiv Detail & Related papers (2024-09-13T09:09:24Z) - BTS: Bridging Text and Sound Modalities for Metadata-Aided Respiratory Sound Classification [0.0]
We fine-tune a pretrained text-audio multimodal model using free-text descriptions derived from the sound samples' metadata.
Our method achieves state-of-the-art performance on the ICBHI dataset, surpassing the previous best result by a notable margin of 1.17%.
arXiv Detail & Related papers (2024-06-10T20:49:54Z) - SoftPatch: Unsupervised Anomaly Detection with Noisy Data [67.38948127630644]
This paper considers label-level noise in image sensory anomaly detection for the first time.
We propose a memory-based unsupervised AD method, SoftPatch, which efficiently denoises the data at the patch level.
Compared with existing methods, SoftPatch maintains a strong modeling ability of normal data and alleviates the overconfidence problem in coreset.
arXiv Detail & Related papers (2024-03-21T08:49:34Z) - Learning with Noisy Foundation Models [95.50968225050012]
This paper is the first work to comprehensively understand and analyze the nature of noise in pre-training datasets.
We propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization.
arXiv Detail & Related papers (2024-03-11T16:22:41Z) - Sample selection with noise rate estimation in noise learning of medical image analysis [3.9934250802854376]
This paper introduces a new sample selection method that enhances the performance of neural networks when trained on noisy datasets.
Our approach features estimating the noise rate of a dataset by analyzing the distribution of loss values using Linear Regression.
We employ sparse regularization to further enhance the noise robustness of our model.
arXiv Detail & Related papers (2023-12-23T11:57:21Z) - Improving the Robustness of Summarization Models by Detecting and
Removing Input Noise [50.27105057899601]
We present a large empirical study quantifying the sometimes severe loss in performance from different types of input noise for a range of datasets and model sizes.
We propose a light-weight method for detecting and removing such noise in the input during model inference without requiring any training, auxiliary models, or even prior knowledge of the type of noise.
arXiv Detail & Related papers (2022-12-20T00:33:11Z) - Treatment Learning Causal Transformer for Noisy Image Classification [62.639851972495094]
In this work, we incorporate this binary information of "existence of noise" as treatment into image classification tasks to improve prediction accuracy.
Motivated from causal variational inference, we propose a transformer-based architecture, that uses a latent generative model to estimate robust feature representations for noise image classification.
We also create new noisy image datasets incorporating a wide range of noise factors for performance benchmarking.
arXiv Detail & Related papers (2022-03-29T13:07:53Z) - Hard Sample Aware Noise Robust Learning for Histopathology Image
Classification [4.75542005200538]
We introduce a novel hard sample aware noise robust learning method for histopathology image classification.
To distinguish the informative hard samples from the harmful noisy ones, we build an easy/hard/noisy (EHN) detection model.
We propose a noise suppressing and hard enhancing (NSHE) scheme to train the noise robust model.
arXiv Detail & Related papers (2021-12-05T11:07:55Z) - Bridging the Gap Between Clean Data Training and Real-World Inference
for Spoken Language Understanding [76.89426311082927]
Existing models are trained on clean data, which causes a textitgap between clean data training and real-world inference.
We propose a method from the perspective of domain adaptation, by which both high- and low-quality samples are embedding into similar vector space.
Experiments on the widely-used dataset, Snips, and large scale in-house dataset (10 million training examples) demonstrate that this method not only outperforms the baseline models on real-world (noisy) corpus but also enhances the robustness, that is, it produces high-quality results under a noisy environment.
arXiv Detail & Related papers (2021-04-13T17:54:33Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.