論文の概要: A Stein Gradient Descent Approach for Doubly Intractable Distributions
- arxiv url: http://arxiv.org/abs/2410.21021v1
- Date: Mon, 28 Oct 2024 13:42:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:21:29.450901
- Title: A Stein Gradient Descent Approach for Doubly Intractable Distributions
- Title(参考訳): 二重誘電性分布に対する定常勾配Descent法
- Authors: Heesang Lee, Songhee Kim, Bokgyeong Kang, Jaewoo Park,
- Abstract要約: そこで本研究では,2重に抽出可能な分布を推定するために,モンテカルロ・スタイン変分勾配勾配(MC-SVGD)法を提案する。
提案手法は,後続分布に匹敵する推論性能を提供しながら,既存のアルゴリズムよりもかなりの計算ゲインを達成する。
- 参考スコア(独自算出の注目度): 5.63014864822787
- License:
- Abstract: Bayesian inference for doubly intractable distributions is challenging because they include intractable terms, which are functions of parameters of interest. Although several alternatives have been developed for such models, they are computationally intensive due to repeated auxiliary variable simulations. We propose a novel Monte Carlo Stein variational gradient descent (MC-SVGD) approach for inference for doubly intractable distributions. Through an efficient gradient approximation, our MC-SVGD approach rapidly transforms an arbitrary reference distribution to approximate the posterior distribution of interest, without necessitating any predefined variational distribution class for the posterior. Such a transport map is obtained by minimizing Kullback-Leibler divergence between the transformed and posterior distributions in a reproducing kernel Hilbert space (RKHS). We also investigate the convergence rate of the proposed method. We illustrate the application of the method to challenging examples, including a Potts model, an exponential random graph model, and a Conway--Maxwell--Poisson regression model. The proposed method achieves substantial computational gains over existing algorithms, while providing comparable inferential performance for the posterior distributions.
- Abstract(参考訳): 二重誘引的分布に対するベイズ予想は、興味のあるパラメータの関数である難解項を含むため、難しい。
このようなモデルのためにいくつかの代替案が開発されているが、補助変数シミュレーションが繰り返されているため、計算集約的である。
そこで本研究では,2重に抽出可能な分布を推定するために,モンテカルロ・スタイン変分勾配勾配(MC-SVGD)法を提案する。
MC-SVGD法は,効率的な勾配近似により,任意の基準分布を高速に変換して興味の後方分布を近似する。
このような輸送写像は、再生されたカーネルヒルベルト空間(RKHS)における変換された分布と後続分布の間のクルバック・リーブラー分岐を最小化することによって得られる。
また,提案手法の収束率についても検討した。
本稿では,Pottsモデル,指数乱数グラフモデル,Conway--Maxwell-Poisson回帰モデルなどの課題に適用する。
提案手法は,後続分布に匹敵する推論性能を提供しながら,既存のアルゴリズムよりもかなりの計算ゲインを達成する。
関連論文リスト
- HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models [1.949927790632678]
本稿では,ブラウン運動文脈におけるコールホップ変換(Cole-Hopf transform)と呼ばれるログ変換に基づく。
本稿では,HJ-sampler という新しいアルゴリズムを開発し,与えられた終端観測による微分方程式の逆問題に対する推論を行う。
論文 参考訳(メタデータ) (2024-09-15T05:30:54Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
機械学習サロゲートモデルを用いて得られた逆PDE解の総不確かさを近似したベイズ近似法を提案する。
非線型拡散方程式に対する反復的アンサンブルスムーズおよび深層アンサンブル法との比較により,提案手法を検証した。
論文 参考訳(メタデータ) (2024-08-20T19:06:02Z) - von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
円値ランダム関数上の表現的および解釈可能な分布の族を探索する。
結果の確率モデルは、統計物理学における連続スピンモデルと関係を持つ。
後続推論のために、高速マルコフ連鎖モンテカルロサンプリングに寄与するストラトノビッチのような拡張を導入する。
論文 参考訳(メタデータ) (2024-06-19T01:57:21Z) - Unbiased Kinetic Langevin Monte Carlo with Inexact Gradients [0.8749675983608172]
動力学的ランゲヴィンダイナミクスに基づく後進手段の非バイアス化手法を提案する。
提案した推定器は偏りがなく、有限分散となり、中心極限定理を満たす。
以上の結果から、大規模アプリケーションでは、非バイアスアルゴリズムは「ゴールドスタンダード」なハミルトニアン・モンテカルロよりも2~3桁効率が良いことが示された。
論文 参考訳(メタデータ) (2023-11-08T21:19:52Z) - Noise-Free Sampling Algorithms via Regularized Wasserstein Proximals [3.4240632942024685]
ポテンシャル関数が支配する分布からサンプリングする問題を考察する。
本研究は, 決定論的な楽譜に基づくMCMC法を提案し, 粒子に対する決定論的進化をもたらす。
論文 参考訳(メタデータ) (2023-08-28T23:51:33Z) - Variational Gaussian filtering via Wasserstein gradient flows [6.023171219551961]
ガウスとガウスの混合フィルタを近似する新しい手法を提案する。
本手法は勾配流表現による変分近似に依存する。
論文 参考訳(メタデータ) (2023-03-11T12:22:35Z) - Variational Laplace Autoencoders [53.08170674326728]
変分オートエンコーダは、遅延変数の後部を近似するために、償却推論モデルを用いる。
完全分解ガウス仮定の限定的後部表現性に対処する新しい手法を提案する。
また、深部生成モデルのトレーニングのための変分ラプラスオートエンコーダ(VLAE)という一般的なフレームワークも提示する。
論文 参考訳(メタデータ) (2022-11-30T18:59:27Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
変分法による離散的グラフィカルモデルの推論は困難である。
エビデンス・ロウアーバウンド(ELBO)を推定するためのサンプリングに基づく多くの手法が提案されている。
Sum Product Networks (SPN) のような確率的回路モデルのトラクタビリティを活用する新しい手法を提案する。
選択的SPNが表現的変動分布として適していることを示し、対象モデルの対数密度が重み付けされた場合、対応するELBOを解析的に計算可能であることを示す。
論文 参考訳(メタデータ) (2020-10-22T05:04:38Z) - Stein Variational Inference for Discrete Distributions [70.19352762933259]
離散分布を等価なピースワイズ連続分布に変換する単純な一般フレームワークを提案する。
提案手法は,ギブスサンプリングや不連続ハミルトニアンモンテカルロといった従来のアルゴリズムよりも優れている。
我々は,この手法がバイナライズニューラルネットワーク(BNN)のアンサンブルを学習するための有望なツールであることを実証した。
さらに、そのような変換は、勾配のないカーネル化されたStein差分に簡単に適用でき、離散分布の良性(GoF)テストを実行することができる。
論文 参考訳(メタデータ) (2020-03-01T22:45:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。