論文の概要: Disentangled and Self-Explainable Node Representation Learning
- arxiv url: http://arxiv.org/abs/2410.21043v1
- Date: Mon, 28 Oct 2024 13:58:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:19:38.856274
- Title: Disentangled and Self-Explainable Node Representation Learning
- Title(参考訳): 切り離された自己説明可能なノード表現学習
- Authors: Simone Piaggesi, André Panisson, Megha Khosla,
- Abstract要約: 自己説明可能な埋め込みを教師なしで生成するフレームワークであるDiSeNEを紹介する。
本手法では,次元的に解釈可能な埋め込みを生成するために,不整合表現学習を用いる。
新規なデシラタを,新たな目的関数を駆動するアンタングルと解釈可能な埋め込みのために定式化した。
- 参考スコア(独自算出の注目度): 1.4002424249260854
- License:
- Abstract: Node representations, or embeddings, are low-dimensional vectors that capture node properties, typically learned through unsupervised structural similarity objectives or supervised tasks. While recent efforts have focused on explaining graph model decisions, the interpretability of unsupervised node embeddings remains underexplored. To bridge this gap, we introduce DiSeNE (Disentangled and Self-Explainable Node Embedding), a framework that generates self-explainable embeddings in an unsupervised manner. Our method employs disentangled representation learning to produce dimension-wise interpretable embeddings, where each dimension is aligned with distinct topological structure of the graph. We formalize novel desiderata for disentangled and interpretable embeddings, which drive our new objective functions, optimizing simultaneously for both interpretability and disentanglement. Additionally, we propose several new metrics to evaluate representation quality and human interpretability. Extensive experiments across multiple benchmark datasets demonstrate the effectiveness of our approach.
- Abstract(参考訳): ノード表現(英: Node representations)または埋め込み(英: Embeddings)は、ノードのプロパティをキャプチャする低次元ベクトルである。
最近の研究はグラフモデル決定の説明に重点を置いているが、教師なしノード埋め込みの解釈可能性はまだ未検討である。
このギャップを埋めるために、教師なしの方法で自己説明可能な埋め込みを生成するフレームワークであるDiSeNE(Disentangled and Self-Explainable Node Embedding)を紹介します。
本手法では,各次元がグラフの異なる位相構造に整合している次元的に解釈可能な埋め込みを生成するために,不整合表現学習を用いる。
我々は,新しい目的関数を駆動し,解釈可能性と解離性の両方を同時に最適化する,解離型および解離型埋め込みのための新しいデシラタを定式化した。
さらに、表現品質と人間の解釈可能性を評価するための新しい指標をいくつか提案する。
複数のベンチマークデータセットにわたる大規模な実験は、我々のアプローチの有効性を実証している。
関連論文リスト
- DINE: Dimensional Interpretability of Node Embeddings [3.3040172566302206]
ノード埋め込みのようなグラフ表現学習手法は、ノードを潜在ベクトル空間にマッピングするための強力なアプローチである。
埋め込みベクトルのグローバル解釈可能性を測定する新しい指標を開発した。
次に、タスク性能を犠牲にすることなく、より解釈しやすくすることで、既存のノード埋め込みを再現できる新しいアプローチであるDINEを紹介します。
論文 参考訳(メタデータ) (2023-10-02T12:47:42Z) - Augment to Interpret: Unsupervised and Inherently Interpretable Graph
Embeddings [0.0]
本稿では,グラフ表現学習について検討し,意味論を保存したデータ拡張を学習し,解釈を生成できることを示す。
私たちがINGENIOUSと名付けた我々のフレームワークは、本質的に解釈可能な埋め込みを生成し、コストのかかるポストホック分析の必要性を排除します。
論文 参考訳(メタデータ) (2023-09-28T16:21:40Z) - Self-Supervised Node Representation Learning via Node-to-Neighbourhood
Alignment [10.879056662671802]
自己教師付きノード表現学習は、教師付きノードと競合する未ラベルグラフからノード表現を学ぶことを目的としている。
本研究では,ノードとその周辺領域の隠蔽表現を整列させることにより,単純なyet効率の自己教師付きノード表現学習を提案する。
我々は,グラフ構造化データセットの集合に対して,ノード分類性能が期待できるノード表現を,小規模から大規模に学習する。
論文 参考訳(メタデータ) (2023-02-09T13:21:18Z) - Sparse Relational Reasoning with Object-Centric Representations [78.83747601814669]
対象中心表現の操作において,リレーショナルニューラルアーキテクチャによって学習されたソフトルールの構成可能性について検討する。
特に特徴量の増加は,いくつかのモデルの性能を向上し,より単純な関係をもたらすことが判明した。
論文 参考訳(メタデータ) (2022-07-15T14:57:33Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
補間型相関低減ネットワーク(ICRN)と呼ばれる新しいグラフコントラスト学習手法を提案する。
提案手法では,決定境界のマージンを大きくすることで,潜在特徴の識別能力を向上させる。
この2つの設定を組み合わせることで、豊富なラベル付きノードと稀に価値あるラベル付きノードから豊富な監視情報を抽出し、離散表現学習を行う。
論文 参考訳(メタデータ) (2022-06-06T14:26:34Z) - Towards Explanation for Unsupervised Graph-Level Representation Learning [108.31036962735911]
既存の説明手法は,教師付き設定,例えばノード分類,グラフ分類に重点を置いているが,教師なしグラフレベルの表現学習に関する説明はまだ探索されていない。
本稿では,非教師付きグラフ表現における説明問題に対処するために,インフォメーション・ボトルネックの原則(IB)を推進し,新しい原理であるtextitUnsupervised Subgraph Information Bottleneck(USIB)を導出する。
また,グラフ表現とラベル空間上の説明部分グラフの関連性も理論的に解析し,表現の堅牢性が説明部分グラフの忠実性に寄与することを明らかにする。
論文 参考訳(メタデータ) (2022-05-20T02:50:15Z) - Explaining, Evaluating and Enhancing Neural Networks' Learned
Representations [2.1485350418225244]
より効率的で効率的な表現への障害ではなく、いかに説明可能性が助けになるかを示す。
我々は,2つの新しいスコアを定義して,潜伏埋め込みの難易度と難易度を評価する。
表現学習課題の訓練において,提案したスコアを制約として採用することで,モデルの下流性能が向上することを示す。
論文 参考訳(メタデータ) (2022-02-18T19:00:01Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z) - From Canonical Correlation Analysis to Self-supervised Graph Neural
Networks [99.44881722969046]
本稿では,グラフデータを用いた自己教師付き表現学習のための概念的単純かつ効果的なモデルを提案する。
古典的カノニカル相関解析にインスパイアされた,革新的な特徴レベルの目的を最適化する。
提案手法は、7つの公開グラフデータセット上で競合的に動作する。
論文 参考訳(メタデータ) (2021-06-23T15:55:47Z) - Closed-Form Factorization of Latent Semantics in GANs [65.42778970898534]
画像合成のために訓練されたGAN(Generative Adversarial Networks)の潜在空間に、解釈可能な次元の豊富なセットが出現することが示されている。
本研究では,GANが学習した内部表現について検討し,その基礎となる変動要因を教師なしで明らかにする。
本稿では,事前学習した重みを直接分解することで,潜在意味発見のためのクローズドフォーム因数分解アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-13T18:05:36Z) - Deep Graph Contrastive Representation Learning [23.37786673825192]
ノードレベルでの対照的な目的を生かして,教師なしグラフ表現学習のための新しいフレームワークを提案する。
具体的には,この2つのビューにおけるノード表現の一致を最大化することにより,ノード表現の破損と学習によって2つのグラフビューを生成する。
我々は,様々な実世界のデータセットを用いて,帰納的および帰納的学習タスクの実証実験を行った。
論文 参考訳(メタデータ) (2020-06-07T11:50:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。