論文の概要: Difference-in-Differences with Time-varying Continuous Treatments using Double/Debiased Machine Learning
- arxiv url: http://arxiv.org/abs/2410.21105v1
- Date: Mon, 28 Oct 2024 15:10:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:22:02.037491
- Title: Difference-in-Differences with Time-varying Continuous Treatments using Double/Debiased Machine Learning
- Title(参考訳): ダブル/デバイアス機械学習を用いた時間変化連続処理による差分差分法
- Authors: Michel F. C. Haddad, Martin Huber, Lucas Z. Zhang,
- Abstract要約: 本稿では,連続処理と複数期間の差分差分法(DiD)を提案する。
本フレームワークは,2つの非ゼロ治療用量の比較において,平均治療効果(ATET)を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We propose a difference-in-differences (DiD) method for a time-varying continuous treatment and multiple time periods. Our framework assesses the average treatment effect on the treated (ATET) when comparing two non-zero treatment doses. The identification is based on a conditional parallel trend assumption imposed on the mean potential outcome under the lower dose, given observed covariates and past treatment histories. We employ kernel-based ATET estimators for repeated cross-sections and panel data adopting the double/debiased machine learning framework to control for covariates and past treatment histories in a data-adaptive manner. We also demonstrate the asymptotic normality of our estimation approach under specific regularity conditions. In a simulation study, we find a compelling finite sample performance of undersmoothed versions of our estimators in setups with several thousand observations.
- Abstract(参考訳): 本稿では, 時間変化を伴う連続処理と複数時間に対する差分差分法(DiD)を提案する。
本フレームワークは,2つの非ゼロ治療用量の比較において,平均治療効果(ATET)を評価する。
この同定は、観察された共変量および過去の治療履歴から、低用量における平均電位結果に課される条件付き平行な傾向の仮定に基づいている。
我々は、カーネルベースのATET推定器を、繰り返し断面積とパネルデータに使用し、データ適応方式で、共変量や過去の治療履歴を制御するために、ダブル/デバイアスの機械学習フレームワークを採用している。
また,特定正規性条件下での予測手法の漸近正規性を示す。
シミュレーション実験により, 数千の観測装置で, 推定器のアンダースムーズバージョンに対して, 説得力のある有限サンプル性能が得られた。
関連論文リスト
- Continuous Treatment Effect Estimation Using Gradient Interpolation and
Kernel Smoothing [43.259723628010896]
個人を個別に標本化し,反現実的結果を推測する直接的アプローチを提唱する。
提案手法を5つのベンチマークで評価し,提案手法が6つの最先端手法よりも精度が高いことを示す。
論文 参考訳(メタデータ) (2024-01-27T15:52:58Z) - TCFimt: Temporal Counterfactual Forecasting from Individual Multiple
Treatment Perspective [50.675845725806724]
個別多面的治療の観点からの時間的対実予測の包括的枠組み(TCFimt)を提案する。
TCFimtは、選択と時間変化バイアスを軽減するためにSeq2seqフレームワークの逆タスクを構築し、比較学習ベースのブロックを設計し、混合処理効果を分離した主治療効果と因果相互作用に分解する。
提案手法は, 特定の治療法による今後の結果予測と, 最先端手法よりも最適な治療タイプとタイミングを選択する上で, 良好な性能を示す。
論文 参考訳(メタデータ) (2022-12-17T15:01:05Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
反現実的な結果を予測することは、パーソナライズされたヘルスケアをアンロックする可能性がある。
既存の因果推論アプローチでは、観察と治療決定の間の通常の離散時間間隔が考慮されている。
そこで本研究では,腫瘍増殖モデルに基づく制御可能なシミュレーション環境を提案する。
論文 参考訳(メタデータ) (2022-06-16T17:15:15Z) - Estimating Conditional Average Treatment Effects with Missing Treatment
Information [20.83151214072516]
治療情報不足時に条件平均治療効果(CATE)を推定することは困難である。
本稿では,欠損治療によるCATE推定について分析する。
我々は,新しいCATE推定アルゴリズムであるMTRNetを開発した。
論文 参考訳(メタデータ) (2022-03-02T21:23:25Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
時系列データから不均一な処理効果を推定する問題について検討する。
本稿では,バランス表現に基づく治療特異的ハザード推定のための新しいディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2021-10-26T20:13:17Z) - Sequential Deconfounding for Causal Inference with Unobserved
Confounders [18.586616164230566]
個別化治療効果を時間とともに推定する手法であるSequential Deconfounderを開発した。
これは、一般的なシーケンシャルな設定で使用できる最初の分解方法である。
本手法は, 経時的に個々の治療反応を偏りなく推定できることを実証する。
論文 参考訳(メタデータ) (2021-04-16T09:56:39Z) - Bayesian prognostic covariate adjustment [59.75318183140857]
疾患の結果に関する歴史的データは、様々な方法で臨床試験の分析に組み込むことができる。
我々は, 予測モデルからの予後スコアを用いて, 治療効果推定の効率を向上する既存の文献に基づいて構築する。
論文 参考訳(メタデータ) (2020-12-24T05:19:03Z) - Evaluating (weighted) dynamic treatment effects by double machine
learning [0.12891210250935145]
本研究では,データ駆動方式で動的処理の因果効果を評価する。
いわゆるNeyman-orthogonal score関数を用いて,中等度(局所的な)不特定性に対する治療効果推定の頑健さを示唆する。
推定子は正規に正規であり、特定の条件下では$sqrtn$-consistentであることを示す。
論文 参考訳(メタデータ) (2020-12-01T09:55:40Z) - DeepRite: Deep Recurrent Inverse TreatmEnt Weighting for Adjusting
Time-varying Confounding in Modern Longitudinal Observational Data [68.29870617697532]
時系列データにおける時間変化の相違に対するDeep Recurrent Inverse TreatmEnt重み付け(DeepRite)を提案する。
DeepRiteは、合成データから基底的真理を復元し、実際のデータから偏りのない処理効果を推定する。
論文 参考訳(メタデータ) (2020-10-28T15:05:08Z) - Estimating Counterfactual Treatment Outcomes over Time Through
Adversarially Balanced Representations [114.16762407465427]
時間とともに治療効果を推定するためにCRN(Counterfactual Recurrent Network)を導入する。
CRNは、患者履歴のバランスの取れた表現を構築するために、ドメイン敵のトレーニングを使用する。
本モデルでは, 正解率の予測と適切な治療時期の選択において, 誤差の低減を図っている。
論文 参考訳(メタデータ) (2020-02-10T20:47:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。