Simulation of the 1d XY model on a quantum computer
- URL: http://arxiv.org/abs/2410.21143v2
- Date: Tue, 11 Mar 2025 16:30:03 GMT
- Title: Simulation of the 1d XY model on a quantum computer
- Authors: Marc Farreras, Alba Cervera-Lierta,
- Abstract summary: We present a comprehensive scheme for the exact simulation of the 1-D XY model on a quantum computer.<n>We propose a novel approach to design a quantum circuit to perform exact time evolution.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The field of quantum computing has grown fast in recent years, both in theoretical advancements and the practical construction of quantum computers. These computers were initially proposed, among other reasons, to efficiently simulate and comprehend the complexities of quantum physics. In this paper, we present a comprehensive scheme for the exact simulation of the 1-D XY model on a quantum computer. We successfully diagonalize the proposed Hamiltonian, enabling access to the complete energy spectrum. Furthermore, we propose a novel approach to design a quantum circuit to perform exact time evolution. Among all the possibilities this opens, we compute the ground and excited state energies for the symmetric XY model with spin chains of $n=4$ and $n=8$ spins. Further, we calculate the expected value of transverse magnetization for the ground state in the transverse Ising model. Both studies allow the observation of a quantum phase transition from an antiferromagnetic to a paramagnetic state. Additionally, we have simulated the time evolution of the state all spins up in the transverse Ising model. The scalability and high performance of our algorithm make it an ideal candidate for benchmarking purposes, while also laying the foundation for simulating other integrable models on quantum computers.
Related papers
- Observation of a non-Hermitian supersonic mode on a trapped-ion quantum computer [6.846670002217106]
We demonstrate the power of variational quantum circuits for resource-efficient simulations of dynamical and equilibrium physics in non-Hermitian systems.
Using a variational quantum compilation scheme for fermionic systems, we reduce gate count, save qubits, and eliminate the need for postselection.
We provide an analytical example demonstrating that simulating single-qubit non-Hermitian dynamics for $Theta(log(n))$ time from certain initial states is exponentially hard on a quantum computer.
arXiv Detail & Related papers (2024-06-21T18:00:06Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Quantum Simulation of an Open System: A Dissipative 1+1D Ising Model [0.0]
We implement quantum algorithms for the simulation of open or complex coupling quantum field theories on IBM devices.
Our successful reproduction of the transition represents a non-trivial test for current hardware.
arXiv Detail & Related papers (2023-11-30T17:25:48Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Probabilistic imaginary-time evolution by using forward and backward
real-time evolution with a single ancilla: first-quantized eigensolver of
quantum chemistry for ground states [0.0]
Imaginary-time evolution (ITE) on a quantum computer is a promising formalism for obtaining the ground state of a quantum system.
We propose a new approach of PITE which requires only a single ancillary qubit.
We discuss the application of our approach to quantum chemistry by focusing on the scaling of computational cost.
arXiv Detail & Related papers (2021-11-24T12:54:27Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
arXiv Detail & Related papers (2020-12-22T19:00:04Z) - Toward simulating Superstring/M-theory on a quantum computer [7.9296423679378]
We present a novel framework for simulating matrix models on a quantum computer.
Supersymmetric matrix models have natural applications to superstring/M-theory and gravitational physics.
We provide an explicit construction for simulating real-time dynamics utilizing techniques of block-encoding, qubitization, and quantum signal processing.
arXiv Detail & Related papers (2020-11-12T18:45:10Z) - Light-Front Field Theory on Current Quantum Computers [0.06524460254566902]
We present a quantum algorithm for simulation of quantum field theory in the light-front formulation.
We demonstrate how existing quantum devices can be used to study the structure of bound states in relativistic nuclear physics.
arXiv Detail & Related papers (2020-09-16T18:32:00Z) - Scattering in the Ising Model Using Quantum Lanczos Algorithm [0.32228025627337864]
We simulate one-particle propagation and two-particle scattering in the one-dimensional transverse Ising model for 3 and 4 spatial sites on a quantum computer.
Results enable us to compute one- and two-particle transition amplitudes, particle numbers for spatial sites, and the transverse magnetization as functions of time.
arXiv Detail & Related papers (2020-08-20T04:05:52Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z) - Roadmap for quantum simulation of the fractional quantum Hall effect [0.0]
A major motivation for building a quantum computer is that it provides a tool to efficiently simulate strongly correlated quantum systems.
In this work, we present a detailed roadmap on how to simulate a two-dimensional electron gas---cooled to absolute zero and pierced by a strong magnetic field---on a quantum computer.
arXiv Detail & Related papers (2020-03-05T10:17:21Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.