論文の概要: KaLDeX: Kalman Filter based Linear Deformable Cross Attention for Retina Vessel Segmentation
- arxiv url: http://arxiv.org/abs/2410.21160v1
- Date: Mon, 28 Oct 2024 16:00:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:21:19.030201
- Title: KaLDeX: Kalman Filter based Linear Deformable Cross Attention for Retina Vessel Segmentation
- Title(参考訳): KaLDeX:Kalmanフィルタを用いた網膜血管セグメンテーションのための線形変形可能なクロスアテンション
- Authors: Zhihao Zhao, Shahrooz Faghihroohi, Yinzheng Zhao, Junjie Yang, Shipeng Zhong, Kai Huang, Nassir Navab, Boyang Li, M. Ali Nasseri,
- Abstract要約: カルマンフィルタを用いた線形変形型クロスアテンション(LDCA)モジュールを用いた血管セグメンテーションのための新しいネットワーク(KaLDeX)を提案する。
我々のアプローチは、カルマンフィルタ(KF)ベースの線形変形可能な畳み込み(LD)とクロスアテンション(CA)モジュールの2つの重要なコンポーネントに基づいている。
提案手法は,網膜基底画像データセット(DRIVE,CHASE_BD1,STARE)とOCTA-500データセットの3mm,6mmを用いて評価した。
- 参考スコア(独自算出の注目度): 46.57880203321858
- License:
- Abstract: Background and Objective: In the realm of ophthalmic imaging, accurate vascular segmentation is paramount for diagnosing and managing various eye diseases. Contemporary deep learning-based vascular segmentation models rival human accuracy but still face substantial challenges in accurately segmenting minuscule blood vessels in neural network applications. Due to the necessity of multiple downsampling operations in the CNN models, fine details from high-resolution images are inevitably lost. The objective of this study is to design a structure to capture the delicate and small blood vessels. Methods: To address these issues, we propose a novel network (KaLDeX) for vascular segmentation leveraging a Kalman filter based linear deformable cross attention (LDCA) module, integrated within a UNet++ framework. Our approach is based on two key components: Kalman filter (KF) based linear deformable convolution (LD) and cross-attention (CA) modules. The LD module is designed to adaptively adjust the focus on thin vessels that might be overlooked in standard convolution. The CA module improves the global understanding of vascular structures by aggregating the detailed features from the LD module with the high level features from the UNet++ architecture. Finally, we adopt a topological loss function based on persistent homology to constrain the topological continuity of the segmentation. Results: The proposed method is evaluated on retinal fundus image datasets (DRIVE, CHASE_BD1, and STARE) as well as the 3mm and 6mm of the OCTA-500 dataset, achieving an average accuracy (ACC) of 97.25%, 97.77%, 97.85%, 98.89%, and 98.21%, respectively. Conclusions: Empirical evidence shows that our method outperforms the current best models on different vessel segmentation datasets. Our source code is available at: https://github.com/AIEyeSystem/KalDeX.
- Abstract(参考訳): 背景と目的:眼科領域では、様々な眼疾患の診断・管理において、正確な血管分割が最重要である。
現代のディープラーニングに基づく血管セグメンテーションモデルは、人間の精度と競合するが、ニューラルネットワークの応用において、極小血管を正確にセグメンテーションする上で大きな課題に直面している。
CNNモデルでは複数のダウンサンプリング操作が必要であるため、高解像度画像からの細部の詳細は必然的に失われる。
本研究の目的は、繊細で小さな血管を捕捉する構造を設計することである。
方法: これらの問題に対処するため, カルマンフィルタを用いた線形変形可能なクロスアテンション (LDCA) モジュールを用いた血管セグメンテーションのための新しいネットワーク (KaLDeX) をUNet++フレームワークに統合した。
我々のアプローチは、カルマンフィルタ(KF)ベースの線形変形可能な畳み込み(LD)とクロスアテンション(CA)モジュールの2つの重要なコンポーネントに基づいている。
LDモジュールは、標準の畳み込みで見落とされた薄い容器に適応的に焦点を合わせるように設計されている。
CAモジュールは、LDモジュールの詳細な機能をUNet++アーキテクチャの高レベルな機能で集約することで、血管構造のグローバルな理解を改善する。
最後に、このセグメンテーションの位相的連続性を制限するために、永続的ホモロジーに基づく位相的損失関数を採用する。
結果: 本手法は, 網膜基底画像データセット(DRIVE, CHASE_BD1, STARE)およびOCTA-500データセットの3mmおよび6mmで評価され, 平均精度は97.25%, 97.77%, 97.85%, 98.89%, 98.21%であった。
結論: 実験的な証拠は,本手法が異なる容器セグメンテーションデータセットにおいて,現在の最良のモデルより優れていることを示している。
私たちのソースコードは、https://github.com/AIEyeSystem/KalDeX.comで公開されています。
関連論文リスト
- KLDD: Kalman Filter based Linear Deformable Diffusion Model in Retinal Image Segmentation [51.03868117057726]
本稿では,網膜血管分割のためのKLDDモデルを提案する。
我々のモデルは、変形可能な畳み込みの柔軟な受容場を利用して、分割を反復的に洗練する拡散過程を用いる。
実験は網膜基底画像データセット(DRIVE,CHASE_DB1)とOCTA-500データセットの3mm,6mmで評価された。
論文 参考訳(メタデータ) (2024-09-19T14:21:38Z) - OCTAMamba: A State-Space Model Approach for Precision OCTA Vasculature Segmentation [10.365417594185685]
そこで我々は,OCTAMambaを提案する。OCTAMambaはOCTAMambaアーキテクチャをベースとした新しいU字型ネットワークで,OCTA内の血管を正確に分割する。
OCTAMambaは、局所的な特徴抽出のためのQuad Stream Efficient Mining Embedding Module、マルチスケールDilated Asymmetric Convolution ModuleをキャプチャするMulti-Scale Dilated Convolution Module、ノイズをフィルタリングしターゲット領域をハイライトするFocused Feature Recalibration Moduleを統合している。
本手法は,線形複雑度を維持しつつ,効率的なグローバルモデリングと局所特徴抽出を実現し,低計算医療応用に適している。
論文 参考訳(メタデータ) (2024-09-12T12:47:34Z) - FS-Net: Full Scale Network and Adaptive Threshold for Improving
Extraction of Micro-Retinal Vessel Structures [4.776514178760067]
本稿では,エンコーダ・デコーダニューラルネットワークアーキテクチャに基づく大規模マイクロ容器抽出機構を提案する。
提案手法はDRIVE,CHASE-DB1,STAREデータセットを用いて評価されている。
論文 参考訳(メタデータ) (2023-11-14T10:32:17Z) - RetiFluidNet: A Self-Adaptive and Multi-Attention Deep Convolutional
Network for Retinal OCT Fluid Segmentation [3.57686754209902]
OCTガイド下治療には網膜液の定量化が必要である。
RetiFluidNetと呼ばれる新しい畳み込みニューラルアーキテクチャは、多クラス網膜流体セグメンテーションのために提案されている。
モデルは、テクスチャ、コンテキスト、エッジといった特徴の階層的な表現学習の恩恵を受ける。
論文 参考訳(メタデータ) (2022-09-26T07:18:00Z) - An Efficient End-to-End Deep Neural Network for Interstitial Lung
Disease Recognition and Classification [0.5424799109837065]
本稿では、IDDパターンを分類するためのエンドツーエンドのディープ畳み込みニューラルネットワーク(CNN)を提案する。
提案モデルでは,カーネルサイズが異なる4つの畳み込み層と,Rectified Linear Unit (ReLU) アクティベーション機能を備える。
128のCTスキャンと5つのクラスからなる21328の画像パッチからなるデータセットを用いて、提案モデルのトレーニングと評価を行う。
論文 参考訳(メタデータ) (2022-04-21T06:36:10Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Rethinking the Extraction and Interaction of Multi-Scale Features for
Vessel Segmentation [53.187152856583396]
網膜血管と主要動脈を2次元基底画像と3次元CTアンギオグラフィー(CTA)スキャンで分割する,PC-Netと呼ばれる新しいディープラーニングモデルを提案する。
PC-Netでは、ピラミッド圧縮励起(PSE)モジュールが各畳み込みブロックに空間情報を導入し、より効果的なマルチスケール特徴を抽出する能力を高めている。
論文 参考訳(メタデータ) (2020-10-09T08:22:54Z) - Multi-Task Neural Networks with Spatial Activation for Retinal Vessel
Segmentation and Artery/Vein Classification [49.64863177155927]
本稿では,網膜血管,動脈,静脈を同時に分割する空間活性化機構を備えたマルチタスクディープニューラルネットワークを提案する。
提案するネットワークは,容器分割における画素ワイド精度95.70%,A/V分類精度94.50%を実現している。
論文 参考訳(メタデータ) (2020-07-18T05:46:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。