論文の概要: An Efficient End-to-End Deep Neural Network for Interstitial Lung
Disease Recognition and Classification
- arxiv url: http://arxiv.org/abs/2204.09909v1
- Date: Thu, 21 Apr 2022 06:36:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-22 14:23:56.820733
- Title: An Efficient End-to-End Deep Neural Network for Interstitial Lung
Disease Recognition and Classification
- Title(参考訳): 間質性肺疾患の認識と分類のための効率的なエンド・ツー・エンド深層ニューラルネットワーク
- Authors: Masum Shah Junayed, Afsana Ahsan Jeny, Md Baharul Islam, Ikhtiar
Ahmed, A F M Shahen Shah
- Abstract要約: 本稿では、IDDパターンを分類するためのエンドツーエンドのディープ畳み込みニューラルネットワーク(CNN)を提案する。
提案モデルでは,カーネルサイズが異なる4つの畳み込み層と,Rectified Linear Unit (ReLU) アクティベーション機能を備える。
128のCTスキャンと5つのクラスからなる21328の画像パッチからなるデータセットを用いて、提案モデルのトレーニングと評価を行う。
- 参考スコア(独自算出の注目度): 0.5424799109837065
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The automated Interstitial Lung Diseases (ILDs) classification technique is
essential for assisting clinicians during the diagnosis process. Detecting and
classifying ILDs patterns is a challenging problem. This paper introduces an
end-to-end deep convolution neural network (CNN) for classifying ILDs patterns.
The proposed model comprises four convolutional layers with different kernel
sizes and Rectified Linear Unit (ReLU) activation function, followed by batch
normalization and max-pooling with a size equal to the final feature map size
well as four dense layers. We used the ADAM optimizer to minimize categorical
cross-entropy. A dataset consisting of 21328 image patches of 128 CT scans with
five classes is taken to train and assess the proposed model. A comparison
study showed that the presented model outperformed pre-trained CNNs and
five-fold cross-validation on the same dataset. For ILDs pattern
classification, the proposed approach achieved the accuracy scores of 99.09%
and the average F score of 97.9%, outperforming three pre-trained CNNs. These
outcomes show that the proposed model is relatively state-of-the-art in
precision, recall, f score, and accuracy.
- Abstract(参考訳): 自動間質性肺疾患 (ilds) 分類法は, 診断過程における臨床医の補助に不可欠である。
ILDパターンの検出と分類は難しい問題である。
本稿では,end-to-end deep convolution neural network (cnn) を提案する。
提案モデルでは、カーネルサイズが異なる4つの畳み込み層と、Rectified Linear Unit(ReLU)アクティベーション関数と、最終特徴写像サイズに等しい大きさのバッチ正規化と最大プーリングと、さらに4つの高密度層からなる。
分類的クロスエントロピーを最小限にするためにADAMオプティマイザを使用した。
128のCTスキャンと5つのクラスからなる21328の画像パッチからなるデータセットを用いて、提案モデルのトレーニングと評価を行う。
比較研究により、提示されたモデルは、トレーニング済みのCNNと同一データセット上の5倍のクロスバリデーションより優れていた。
ildsパターンの分類において、提案手法は99.09%の精度スコアと97.9%の平均fスコアを達成し、3つの事前訓練済みcnnを上回った。
これらの結果は,提案モデルが比較的精度,リコール,fスコア,精度が高いことを示している。
関連論文リスト
- KaLDeX: Kalman Filter based Linear Deformable Cross Attention for Retina Vessel Segmentation [46.57880203321858]
カルマンフィルタを用いた線形変形型クロスアテンション(LDCA)モジュールを用いた血管セグメンテーションのための新しいネットワーク(KaLDeX)を提案する。
我々のアプローチは、カルマンフィルタ(KF)ベースの線形変形可能な畳み込み(LD)とクロスアテンション(CA)モジュールの2つの重要なコンポーネントに基づいている。
提案手法は,網膜基底画像データセット(DRIVE,CHASE_BD1,STARE)とOCTA-500データセットの3mm,6mmを用いて評価した。
論文 参考訳(メタデータ) (2024-10-28T16:00:42Z) - Comparative Performance Analysis of Transformer-Based Pre-Trained Models for Detecting Keratoconus Disease [0.0]
本研究は、変性眼疾患である角膜症(keratoconus)の診断のために、訓練済みの8つのCNNを比較した。
MobileNetV2は角膜と正常な症例を誤分類の少ない場合に最も正確なモデルであった。
論文 参考訳(メタデータ) (2024-08-16T20:15:24Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Prompt Tuning for Parameter-efficient Medical Image Segmentation [79.09285179181225]
2つの医用画像データセットのセマンティックセグメンテーションにパラメータ効率が良いが効果的な適応を実現するために,いくつかのコントリビューションを提案し,検討する。
我々はこのアーキテクチャを、オンライン生成プロトタイプへの割り当てに基づく専用密集型セルフスーパービジョンスキームで事前訓練する。
得られたニューラルネットワークモデルにより、完全に微調整されたモデルとパラメータに適応したモデルとのギャップを緩和できることを実証する。
論文 参考訳(メタデータ) (2022-11-16T21:55:05Z) - Early Diagnosis of Retinal Blood Vessel Damage via Deep Learning-Powered
Collective Intelligence Models [0.3670422696827525]
Swarmアルゴリズムのパワーは、タスクに最適なモデルを提供するために、畳み込み層、プーリング層、正規化層の様々な組み合わせを探すために使用される。
最高のTDCNモデルは90.3%、AUC ROCは0.956、Cohenスコアは0.967である。
論文 参考訳(メタデータ) (2022-10-17T21:38:38Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - Data Augmentation and CNN Classification For Automatic COVID-19
Diagnosis From CT-Scan Images On Small Dataset [0.0]
肺CT画像からのCOVID1-19自動診断フレームワークを提案する。
本論文では,複数のHounsfield Unit(HU)正規化ウィンドウを用いた一意かつ効果的なデータ拡張手法を提案する。
トレーニング・検証データセットでは,患者の分類精度は93.39%である。
論文 参考訳(メタデータ) (2021-08-16T15:23:00Z) - Automatic CT Segmentation from Bounding Box Annotations using
Convolutional Neural Networks [2.554905387213585]
提案手法は,1)k平均クラスタリングによる境界ボックスアノテーションを用いた擬似マスクの生成,2)分割モデルとして3次元U-Net畳み込みニューラルネットワークを反復的に訓練する。
肝臓、脾臓、腎臓のセグメンテーションでは、それぞれ95.19%、92.11%、91.45%の精度を達成した。
論文 参考訳(メタデータ) (2021-05-29T14:48:16Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。