Unharmful Backdoor-based Client-side Watermarking in Federated Learning
- URL: http://arxiv.org/abs/2410.21179v1
- Date: Mon, 28 Oct 2024 16:20:01 GMT
- Title: Unharmful Backdoor-based Client-side Watermarking in Federated Learning
- Authors: Kaijing Luo, Ka-Ho Chow,
- Abstract summary: Sanitizer is a server-side method that ensures client-embedded backdoors cannot be triggered on natural queries.
It achieves near-perfect success in verifying client contributions while mitigating the risks of malicious watermark use.
- Score: 4.999947975898418
- License:
- Abstract: Protecting intellectual property (IP) in federated learning (FL) is increasingly important as clients contribute proprietary data to collaboratively train models. Model watermarking, particularly through backdoor-based methods, has emerged as a popular approach for verifying ownership and contributions in deep neural networks trained via FL. By manipulating their datasets, clients can embed a secret pattern, resulting in non-intuitive predictions that serve as proof of participation, useful for claiming incentives or IP co-ownership. However, this technique faces practical challenges: client watermarks can collide, leading to ambiguous ownership claims, and malicious clients may exploit watermarks to inject harmful backdoors, jeopardizing model integrity. To address these issues, we propose Sanitizer, a server-side method that ensures client-embedded backdoors cannot be triggered on natural queries in harmful ways. It identifies subnets within client-submitted models, extracts backdoors throughout the FL process, and confines them to harmless, client-specific input subspaces. This approach not only enhances Sanitizer's efficiency but also resolves conflicts when clients use similar triggers with different target labels. Our empirical results demonstrate that Sanitizer achieves near-perfect success in verifying client contributions while mitigating the risks of malicious watermark use. Additionally, it reduces GPU memory consumption by 85% and cuts processing time by at least 5 times compared to the baseline.
Related papers
- ACCESS-FL: Agile Communication and Computation for Efficient Secure Aggregation in Stable Federated Learning Networks [26.002975401820887]
Federated Learning (FL) is a distributed learning framework designed for privacy-aware applications.
Traditional FL approaches risk exposing sensitive client data when plain model updates are transmitted to the server.
Google's Secure Aggregation (SecAgg) protocol addresses this threat by employing a double-masking technique.
We propose ACCESS-FL, a communication-and-computation-efficient secure aggregation method.
arXiv Detail & Related papers (2024-09-03T09:03:38Z) - Trust Driven On-Demand Scheme for Client Deployment in Federated Learning [39.9947471801304]
"Trusted-On-Demand-FL" establishes a relationship of trust between the server and the pool of eligible clients.
Our simulations rely on a continuous user behavior dataset, deploying an optimization model powered by a genetic algorithm.
arXiv Detail & Related papers (2024-05-01T08:50:08Z) - Who Leaked the Model? Tracking IP Infringers in Accountable Federated Learning [51.26221422507554]
Federated learning (FL) is an effective collaborative learning framework to coordinate data and computation resources from massive and distributed clients in training.
Such collaboration results in non-trivial intellectual property (IP) represented by the model parameters that should be protected and shared by the whole party rather than an individual user.
To block such IP leakage, it is essential to make the IP identifiable in the shared model and locate the anonymous infringer who first leaks it.
We propose Decodable Unique Watermarking (DUW) for complying with the requirements of accountable FL.
arXiv Detail & Related papers (2023-12-06T00:47:55Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
Federated Learning (FL) enables distributed participants to train a global model without sharing data directly to a central server.
Recent studies have revealed that FL is vulnerable to gradient inversion attack (GIA), which aims to reconstruct the original training samples.
We propose Client-side poisoning Gradient Inversion (CGI), which is a novel attack method that can be launched from clients.
arXiv Detail & Related papers (2023-09-14T03:48:27Z) - Safe and Robust Watermark Injection with a Single OoD Image [90.71804273115585]
Training a high-performance deep neural network requires large amounts of data and computational resources.
We propose a safe and robust backdoor-based watermark injection technique.
We induce random perturbation of model parameters during watermark injection to defend against common watermark removal attacks.
arXiv Detail & Related papers (2023-09-04T19:58:35Z) - Mitigating Cross-client GANs-based Attack in Federated Learning [78.06700142712353]
Multi distributed multimedia clients can resort to federated learning (FL) to jointly learn a global shared model.
FL suffers from the cross-client generative adversarial networks (GANs)-based (C-GANs) attack.
We propose Fed-EDKD technique to improve the current popular FL schemes to resist C-GANs attack.
arXiv Detail & Related papers (2023-07-25T08:15:55Z) - G$^2$uardFL: Safeguarding Federated Learning Against Backdoor Attacks
through Attributed Client Graph Clustering [116.4277292854053]
Federated Learning (FL) offers collaborative model training without data sharing.
FL is vulnerable to backdoor attacks, where poisoned model weights lead to compromised system integrity.
We present G$2$uardFL, a protective framework that reinterprets the identification of malicious clients as an attributed graph clustering problem.
arXiv Detail & Related papers (2023-06-08T07:15:04Z) - BayBFed: Bayesian Backdoor Defense for Federated Learning [17.433543798151746]
Federated learning (FL) allows participants to jointly train a machine learning model without sharing their private data with others.
BayBFed proposes to utilize probability distributions over client updates to detect malicious updates in FL.
arXiv Detail & Related papers (2023-01-23T16:01:30Z) - CrowdGuard: Federated Backdoor Detection in Federated Learning [39.58317527488534]
This paper presents a novel defense mechanism, CrowdGuard, that effectively mitigates backdoor attacks in Federated Learning.
CrowdGuard employs a server-located stacked clustering scheme to enhance its resilience to rogue client feedback.
The evaluation results demonstrate that CrowdGuard achieves a 100% True-Positive-Rate and True-Negative-Rate across various scenarios.
arXiv Detail & Related papers (2022-10-14T11:27:49Z) - Robust Quantity-Aware Aggregation for Federated Learning [72.59915691824624]
Malicious clients can poison model updates and claim large quantities to amplify the impact of their model updates in the model aggregation.
Existing defense methods for FL, while all handling malicious model updates, either treat all quantities benign or simply ignore/truncate the quantities of all clients.
We propose a robust quantity-aware aggregation algorithm for federated learning, called FedRA, to perform the aggregation with awareness of local data quantities.
arXiv Detail & Related papers (2022-05-22T15:13:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.