SeriesGAN: Time Series Generation via Adversarial and Autoregressive Learning
- URL: http://arxiv.org/abs/2410.21203v1
- Date: Mon, 28 Oct 2024 16:49:03 GMT
- Title: SeriesGAN: Time Series Generation via Adversarial and Autoregressive Learning
- Authors: MohammadReza EskandariNasab, Shah Muhammad Hamdi, Soukaina Filali Boubrahimi,
- Abstract summary: We introduce an advanced framework that integrates the advantages of an autoencoder-generated embedding space with the adversarial training dynamics of GANs.
This method employs two discriminators: one to specifically guide the generator and another to refine both the autoencoder's and generator's output.
Our framework excels at generating high-fidelity time series data, consistently outperforming existing state-of-the-art benchmarks.
- Score: 0.9374652839580181
- License:
- Abstract: Current Generative Adversarial Network (GAN)-based approaches for time series generation face challenges such as suboptimal convergence, information loss in embedding spaces, and instability. To overcome these challenges, we introduce an advanced framework that integrates the advantages of an autoencoder-generated embedding space with the adversarial training dynamics of GANs. This method employs two discriminators: one to specifically guide the generator and another to refine both the autoencoder's and generator's output. Additionally, our framework incorporates a novel autoencoder-based loss function and supervision from a teacher-forcing supervisor network, which captures the stepwise conditional distributions of the data. The generator operates within the latent space, while the two discriminators work on latent and feature spaces separately, providing crucial feedback to both the generator and the autoencoder. By leveraging this dual-discriminator approach, we minimize information loss in the embedding space. Through joint training, our framework excels at generating high-fidelity time series data, consistently outperforming existing state-of-the-art benchmarks both qualitatively and quantitatively across a range of real and synthetic multivariate time series datasets.
Related papers
- ChronoGAN: Supervised and Embedded Generative Adversarial Networks for Time Series Generation [0.9374652839580181]
We introduce a robust framework aimed at addressing and mitigating these issues effectively.
This framework integrates the benefits of an Autoencoder-generated embedding space with the adversarial training dynamics of GANs.
We introduce an early generation algorithm and an improved neural network architecture to enhance stability and ensure effective generalization across both short and long time series.
arXiv Detail & Related papers (2024-09-21T04:51:35Z) - MS$^3$D: A RG Flow-Based Regularization for GAN Training with Limited Data [16.574346252357653]
We propose a novel regularization method based on the idea of renormalization group (RG) in physics.
We show that our method can effectively enhance the performance and stability of GANs under limited data scenarios.
arXiv Detail & Related papers (2024-08-20T18:37:37Z) - Time-series Generation by Contrastive Imitation [87.51882102248395]
We study a generative framework that seeks to combine the strengths of both: Motivated by a moment-matching objective to mitigate compounding error, we optimize a local (but forward-looking) transition policy.
At inference, the learned policy serves as the generator for iterative sampling, and the learned energy serves as a trajectory-level measure for evaluating sample quality.
arXiv Detail & Related papers (2023-11-02T16:45:25Z) - Fully Embedded Time-Series Generative Adversarial Networks [0.0]
Generative Adversarial Networks (GANs) should produce synthetic data that fits the underlying distribution of the data being modeled.
For real valued time-series data, this implies the need to simultaneously capture the static distribution of the data, but also the full temporal distribution of the data for any potential time horizon.
In FETSGAN, entire sequences are translated directly to the generator's sampling space using a seq2seq style adversarial auto encoder (AAE)
arXiv Detail & Related papers (2023-08-30T03:14:02Z) - Complexity Matters: Rethinking the Latent Space for Generative Modeling [65.64763873078114]
In generative modeling, numerous successful approaches leverage a low-dimensional latent space, e.g., Stable Diffusion.
In this study, we aim to shed light on this under-explored topic by rethinking the latent space from the perspective of model complexity.
arXiv Detail & Related papers (2023-07-17T07:12:29Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
Two prominent generative models, Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs)
GANs suffer from unstable optimization, while VAEs are prone to posterior collapse and over-smoothed generations.
We present a conditional denoising diffusion model, which includes a sequence encoder, a cross-attentive denoising decoder, and a step-wise diffuser.
arXiv Detail & Related papers (2023-04-22T15:32:59Z) - Generation of data on discontinuous manifolds via continuous stochastic
non-invertible networks [6.201770337181472]
We show how to generate discontinuous distributions using continuous networks.
We derive a link between the cost functions and the information-theoretic formulation.
We apply our approach to synthetic 2D distributions to demonstrate both reconstruction and generation of discontinuous distributions.
arXiv Detail & Related papers (2021-12-17T17:39:59Z) - Towards Generating Real-World Time Series Data [52.51620668470388]
We propose a novel generative framework for time series data generation - RTSGAN.
RTSGAN learns an encoder-decoder module which provides a mapping between a time series instance and a fixed-dimension latent vector.
To generate time series with missing values, we further equip RTSGAN with an observation embedding layer and a decide-and-generate decoder.
arXiv Detail & Related papers (2021-11-16T11:31:37Z) - Conditional Hybrid GAN for Sequence Generation [56.67961004064029]
We propose a novel conditional hybrid GAN (C-Hybrid-GAN) to solve this issue.
We exploit the Gumbel-Softmax technique to approximate the distribution of discrete-valued sequences.
We demonstrate that the proposed C-Hybrid-GAN outperforms the existing methods in context-conditioned discrete-valued sequence generation.
arXiv Detail & Related papers (2020-09-18T03:52:55Z) - Dual Adversarial Auto-Encoders for Clustering [152.84443014554745]
We propose Dual Adversarial Auto-encoder (Dual-AAE) for unsupervised clustering.
By performing variational inference on the objective function of Dual-AAE, we derive a new reconstruction loss which can be optimized by training a pair of Auto-encoders.
Experiments on four benchmarks show that Dual-AAE achieves superior performance over state-of-the-art clustering methods.
arXiv Detail & Related papers (2020-08-23T13:16:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.