論文の概要: Adaptive Transfer Clustering: A Unified Framework
- arxiv url: http://arxiv.org/abs/2410.21263v3
- Date: Fri, 15 Nov 2024 04:32:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:36:19.507815
- Title: Adaptive Transfer Clustering: A Unified Framework
- Title(参考訳): Adaptive Transfer Clustering: 統一フレームワーク
- Authors: Yuqi Gu, Zhongyuan Lyu, Kaizheng Wang,
- Abstract要約: 本稿では,未知の相違点が存在する場合の共通性を自動的に活用するアダプティブ・トランスファー・クラスタリング(ATC)アルゴリズムを提案する。
これはガウス混合モデル、ブロックモデル、潜在クラスモデルを含む幅広い統計モデルに適用される。
- 参考スコア(独自算出の注目度): 2.3144964550307496
- License:
- Abstract: We propose a general transfer learning framework for clustering given a main dataset and an auxiliary one about the same subjects. The two datasets may reflect similar but different latent grouping structures of the subjects. We propose an adaptive transfer clustering (ATC) algorithm that automatically leverages the commonality in the presence of unknown discrepancy, by optimizing an estimated bias-variance decomposition. It applies to a broad class of statistical models including Gaussian mixture models, stochastic block models, and latent class models. A theoretical analysis proves the optimality of ATC under the Gaussian mixture model and explicitly quantifies the benefit of transfer. Extensive simulations and real data experiments confirm our method's effectiveness in various scenarios.
- Abstract(参考訳): そこで本研究では,クラスタリングのための一般的な移動学習フレームワークを提案する。
この2つのデータセットは、被験者の類似しているが異なる潜在グループ構造を反映している可能性がある。
本稿では,推定バイアス分散分解を最適化することにより,未知の相違点の存在下での共通性を自動的に活用するアダプティブ・トランスファー・クラスタリング(ATC)アルゴリズムを提案する。
これはガウス混合モデル、確率ブロックモデル、潜在クラスモデルを含む幅広い統計モデルに適用される。
理論解析はガウス混合モデルの下でのATCの最適性を証明し、転送の利点を明示的に定量化する。
大規模シミュレーションと実データ実験により,様々なシナリオにおいて本手法の有効性が確認された。
関連論文リスト
- Task Groupings Regularization: Data-Free Meta-Learning with Heterogeneous Pre-trained Models [83.02797560769285]
Data-Free Meta-Learning (DFML)は、トレーニング済みモデルのコレクションから、元のデータにアクセスせずに知識を抽出することを目的としている。
現在の手法は、事前訓練されたモデル間の不均一性を見落とし、タスクの衝突による性能低下につながることが多い。
課題群規則化(Task Groupings Regularization)は、矛盾するタスクをグループ化し整合させることにより、モデルの不均一性から恩恵を受ける新しいアプローチである。
論文 参考訳(メタデータ) (2024-05-26T13:11:55Z) - Lp-Norm Constrained One-Class Classifier Combination [18.27510863075184]
アンサンブルの空間/均一性をモデル化し,一級分類問題を考える。
定式化凸制約問題の解法を効果的に提案する。
論文 参考訳(メタデータ) (2023-12-25T16:32:34Z) - Finite Mixtures of Multivariate Poisson-Log Normal Factor Analyzers for
Clustering Count Data [0.8499685241219366]
因子分析モデルの混合に基づく8種類の擬似混合モデルについて紹介する。
提案モデルはRNAシークエンシング研究から得られた離散的なデータをクラスタリングする文脈において探索される。
論文 参考訳(メタデータ) (2023-11-13T21:23:15Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - Accuracy on the Line: On the Strong Correlation Between
Out-of-Distribution and In-Distribution Generalization [89.73665256847858]
分布外性能は,広範囲なモデルと分布シフトに対する分布内性能と強く相関していることを示す。
具体的には,CIFAR-10 と ImageNet の変種に対する分布内分布と分布外分布性能の強い相関関係を示す。
また,CIFAR-10-Cと組織分類データセットCamelyon17-WILDSの合成分布の変化など,相関が弱いケースについても検討した。
論文 参考訳(メタデータ) (2021-07-09T19:48:23Z) - Deep Conditional Gaussian Mixture Model for Constrained Clustering [7.070883800886882]
制約付きクラスタリングは、部分的にラベル付けされたデータの増加量に関する事前情報を利用することができる。
本稿では、直感的で解釈可能で、勾配変動推論の枠組みで効率的に訓練できる制約付きクラスタリングのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-11T13:38:09Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
本稿では,サンプルクラスタの探索と,複数の不完全な混合型ターゲットを同時にモデル化するFMRモデルを提案する。
我々は、高次元の学習フレームワークの下で、無症状のオラクルのパフォーマンス境界をモデルに提供します。
その結果,我々のモデルは最先端の性能を達成できることがわかった。
論文 参考訳(メタデータ) (2020-10-12T03:27:07Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z) - Semi-nonparametric Latent Class Choice Model with a Flexible Class
Membership Component: A Mixture Model Approach [6.509758931804479]
提案したモデルは、従来のランダムユーティリティ仕様に代わるアプローチとして混合モデルを用いて潜在クラスを定式化する。
その結果,混合モデルにより潜在クラス選択モデル全体の性能が向上した。
論文 参考訳(メタデータ) (2020-07-06T13:19:26Z) - Ensemble Model with Batch Spectral Regularization and Data Blending for
Cross-Domain Few-Shot Learning with Unlabeled Data [75.94147344921355]
多様な特徴変換行列を用いてマルチブランチアンサンブルフレームワークを構築する。
本研究では,未ラベルデータを利用したデータブレンディング手法を提案し,対象領域におけるスパースサポートを増強する。
論文 参考訳(メタデータ) (2020-06-08T02:27:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。